
AAAI 2025 | 开放世界的深伪检测,北交大团队:解决好无配对数据挑战很重要
AAAI 2025 | 开放世界的深伪检测,北交大团队:解决好无配对数据挑战很重要现有的深伪检测方法大多依赖于配对数据,即一张压缩图像和其对应的原始图像来训练模型,这在许多实际的开放环境中并不适用。尤其是在社交媒体等开放网络环境(OSN)中,图像通常经过多种压缩处理,导致图像质量受到影响,深伪识别也因此变得异常困难。
现有的深伪检测方法大多依赖于配对数据,即一张压缩图像和其对应的原始图像来训练模型,这在许多实际的开放环境中并不适用。尤其是在社交媒体等开放网络环境(OSN)中,图像通常经过多种压缩处理,导致图像质量受到影响,深伪识别也因此变得异常困难。
GPT-5被曝效果远不达预期。 OpenAI连续12场发布会刚刚结束,大家最想看的GPT-5/4.5影子都没有,于是华尔街日报这边爆料了。
人能逆向思维,LLM 也可以吗?北卡罗来纳大学教堂山分校与谷歌最近的一项研究表明,LLM 确实可以,并且逆向思维还能帮助提升 LLM 的正向推理能力!
如今,多模态大模型(MLLM)已经在视觉理解领域取得了长足进步,其中视觉指令调整方法已被广泛应用。该方法是具有数据和计算效率方面的优势,其有效性表明大语言模型(LLM)拥有了大量固有的视觉知识,使得它们能够在指令调整过程中有效地学习和发展视觉理解。
本文中,香港大学与 Adobe 联合提出名为 UniReal 的全新图像编辑与生成范式。该方法将多种图像任务统一到视频生成框架中,通过将不同类别和数量的输入/输出图像建模为视频帧,从大规模真实视频数据中学习属性、姿态、光照等多种变化规律,从而实现高保真的生成效果。
多模态信号,包括文本、音频、图像和视频等,可以被整合到语义通信中,在语义层面提供低延迟、高质量的沉浸式体验。
近年来,随着 Stable Diffusion 等文本到图像生成模型的发展,这些技术使得在保留内容准确性的同时,实现出色的风格转换成为可能。这项技术在数字绘画、广告和游戏设计等领域具有重要的应用价值。
面对AI圈疯传的「数据如化石燃料一般正在枯竭」,我们该如何从海量数据中掘金?AI炼出的数据飞轮2.0,或许就是答案。
要让大模型适应各不一样的下游任务,微调必不可少。常规的中心化微调过程需要模型和数据存在于同一位置 —— 要么需要数据所有者上传数据(这会威胁到数据所有者的数据隐私),要么模型所有者需要共享模型权重(这又可能泄露自己花费大量资源训练的模型)。
Florence-VL 提出了使用生成式视觉编码器 Florence-2 作为多模态模型的视觉信息输入,克服了传统视觉编码器(如 CLIP)仅提供单一视觉表征而往往忽略图片中关键的局部信息。