
NeurIPS 2024 | LLM智能体真能模拟人类行为吗?答案有了
NeurIPS 2024 | LLM智能体真能模拟人类行为吗?答案有了在这篇论文中,我们专注于人类互动中的信任行为,这种行为通过依赖他人将自身利益置于风险之中,是人类互动中最关键的行为之一,在日常沟通到社会系统中都扮演着重要角色。
在这篇论文中,我们专注于人类互动中的信任行为,这种行为通过依赖他人将自身利益置于风险之中,是人类互动中最关键的行为之一,在日常沟通到社会系统中都扮演着重要角色。
目前大语言模型(Large Language Models, LLMs)的推理能力备受关注。从思维链(Chain of Thought,CoT)技术提出,到以 o1 为代表的长思考模型发布,大模型正在展现出接近人类甚至领域专家的水平,其中数学推理是一个典型任务。
近日,IBM宣布了一项重大的光学技术突破,该技术可以以光速训练AI模型,同时节省大量能源。
引用超85000次的经典论文GAN获NeurIPS2024时间检验奖后,它的起源和背后故事也被抛了出来。 要从Yoshua Bengio实验室的一次头脑风暴说起。
Allen Institute for AI(AI2)发布了Tülu 3系列模型,一套开源的最先进的语言模型,性能与GPT-4o-mini等闭源模型相媲美。Tülu 3包括数据、代码、训练配方和评估框架,旨在推动开源模型后训练技术的发展。
支持大模型一路狂飙的 Scaling Law 到头了? 近期,AI 圈针对 Scaling Law 是否到头产生了分歧。一派观点认为 Scaling Law 已经「撞墙」了,另一派观点(如 OpenAI CEO Sam Altman)仍然坚定 Scaling Law 的潜力尚未穷尽。
北京交通大学研究团队悄默声推出了一版o1,而且所有源代码、精选数据集以及衍生模型都开源!
别说什么“没数据就去标注啊,没钱标注就别做大模型啊”这种风凉话,有些人数据不足也能做大模型,是因为有野心,就能想出来稀缺数据场景下的大模型解决方案,或者整理出本文将要介绍的 "Practical Guide to Fine-tuning with Limited Data" 这样的综述。
知识密集型工作也败了!大型语言模型在预测神经科学结果方面超越了人类专家,平均准确率达到81%,而人类专家仅为63%;模型通过整合大量文献数据,展现出了惊人的前瞻性预测能力,预示着未来科研工作中人机协作的巨大潜力。
在人工智能发展史上,强化学习 (RL) 凭借其严谨的数学框架解决了众多复杂的决策问题,从围棋、国际象棋到机器人控制等领域都取得了突破性进展。