
NeurIPS Spotlight|从分类到生成:无训练的可控扩散生成
NeurIPS Spotlight|从分类到生成:无训练的可控扩散生成近年来,扩散模型(Diffusion Models)已成为生成模型领域的研究前沿,它们在图像生成、视频生成、分子设计、音频生成等众多领域展现出强大的能力。
近年来,扩散模型(Diffusion Models)已成为生成模型领域的研究前沿,它们在图像生成、视频生成、分子设计、音频生成等众多领域展现出强大的能力。
大模型如今已具有越来越长的上下文,而与之相伴的是推理成本的上升。英伟达最新提出的Star Attention,能够在不损失精度的同时,显著减少推理计算量,从而助力边缘计算。
2023 年,阿里妈妈首次提出了 AIGB(AI-Generated Bidding)Bidding 模型训练新范式(参阅:阿里妈妈生成式出价模型(AIGB)详解)。
几个小时前,著名 AI 研究者、OpenAI 创始成员之一 Andrej Karpathy 发布了一篇备受关注的长推文,其中分享了注意力机制背后一些或许少有人知的故事。
华中科技大学研发的UniSeg3D算法,能一次性完成三维场景中的六项分割任务,提升了场景理解的全面性和效率。通过任务间的信息共享,优化了性能,为虚拟现实和机器人导航等领域带来新的解决方案。
用大模型“蒸馏”小模型,有新招了!
扩散模型和最优传输之间到底存在怎样的联系?对很多人来说还是一个未解之谜。
评估和评价长期以来一直是人工智能 (AI) 和自然语言处理 (NLP) 中的关键挑战。然而,传统方法,无论是基于匹配还是基于词嵌入,往往无法判断精妙的属性并提供令人满意的结果。
斯坦福大学推出的IKEA Video Manuals数据集,通过4D对齐组装视频和说明书,为AI理解和执行复杂空间任务提供了新的挑战和研究基准,让机器人或AR眼镜指导家具组装不再是梦。
MIT的76页深度报告!AI辅助创新显著增长——这毋庸置疑。但,值得注意的是,AI加剧了不同水平科学家产出的差异,这与科学家的判断力强相关,意味着缺乏判断力的科学家在未来可能会被慢慢淘汰……