
RAG新突破:块状注意力机制实现超低延迟检索增强
RAG新突破:块状注意力机制实现超低延迟检索增强RAG,AI,模型训练,人工智能
RAG,AI,模型训练,人工智能
在人工智能领域,大型预训练模型(如 GPT 和 LLaVA)的 “幻觉” 现象常被视为一个难以克服的挑战,尤其是在执行精确任务如图像分割时。
AI,LLM,模型训练,人工智能
AI界也有了自己的“奥斯卡”,哪家大模型角色扮演更入戏? 来自香港科技大学、腾讯、新加坡管理大学的团队提出新综述—— 不仅系统性地回顾了角色扮演语言模型的发展历程,还对每个阶段的关键进展进行了深入剖析,展示了这些进展如何推动模型逐步实现更复杂、更逼真的角色扮演。
Transformer自问世后就大放异彩,但有个小毛病一直没解决: 总爱把注意力放在不相关的内容上,也就是信噪比低。 现在微软亚研院、清华团队出手,提出全新改进版Differential Transformer,专治这个老毛病,引起热议。
改进KV缓存压缩,大模型推理显存瓶颈迎来新突破—— 中科大研究团队提出Ada-KV,通过自适应预算分配算法来优化KV缓存的驱逐过程,以提高推理效率。
多图像场景也能用DPO方法来对齐了! 由上海交大、上海AI实验室、港中文等带来最新成果MIA-DPO。 这是一个面向大型视觉语言模型的多图像增强的偏好对齐方法。
探索更高效的模型架构, MoE是最具代表性的方向之一。 MoE架构的主要优势是利用稀疏激活的性质,将大模型拆解成若干功能模块,每次计算仅激活其中一小部分,而保持其余模块不被使用,从而大大降低了模型的计算与学习成本,能够在同等计算量的情况下产生性能优势。
CGPO框架通过混合评审机制和约束优化器,有效解决了RLHF在多任务学习中的奖励欺骗和多目标优化问题,显著提升了语言模型在多任务环境中的表现。CGPO的设计为未来多任务学习提供了新的优化路径,有望进一步提升大型语言模型的效能和稳定性。
在奖励中减去平均奖励