
整合长期记忆,AI实现自我进化,探索大模型这一可能性
整合长期记忆,AI实现自我进化,探索大模型这一可能性近日,天桥脑科学研究院和普林斯顿大学等多所研究机构发布了一篇研究论文,详细阐述了长期记忆对 AI 自我进化的重要性,并且他们还提出了自己的实现框架 —— 基于多智能体的 Omne,其在 GAIA 基准上取得了第一名的成绩。
近日,天桥脑科学研究院和普林斯顿大学等多所研究机构发布了一篇研究论文,详细阐述了长期记忆对 AI 自我进化的重要性,并且他们还提出了自己的实现框架 —— 基于多智能体的 Omne,其在 GAIA 基准上取得了第一名的成绩。
视频内容的快速增长给视频检索技术,特别是细粒度视频片段检索(VCMR),带来了巨大挑战。VCMR 要求系统根据文本查询从视频库中精准定位视频中的匹配片段,需具备跨模态理解和细粒度视频理解能力。
斯坦福吴佳俊团队与MIT携手打造的最新研究成果,让我们离实时生成开放世界游戏又近了一大步。
在这个信息爆炸的时代,如何让AI生成的视频更具创意,又符合特定需求?
OpenAI 最近发布的 o1 模型在数学、代码生成和长程规划等复杂任务上取得了突破性进展,据业内人士分析披露,其关键技术在于基于强化学习的搜索与学习机制。通过迭代式的自举过程,o1 基于现有大语言模型的强大推理能力,生成合理的推理过程,并将这些推理融入到其强化学习训练过程中。
哈佛大学研究了大型语言模型在回答晦涩难懂和有争议问题时产生「幻觉」的原因,发现模型输出的准确性高度依赖于训练数据的质量和数量。研究结果指出,大模型在处理有广泛共识的问题时表现较好,但在面对争议性或信息不足的主题时则容易产生误导性的回答。
近日,深度学习三巨头之一的Yoshua Bengio,带领团队推出了全新的RNN架构,以大道至简的思想与Transformer一较高下。
数学界对AI在数学中应用的看法存在分歧,但年轻一代更支持AI和验证工具。Vlad指出,通过递归自我改进,AI有潜力在数学和其他复杂问题上取得重大突破。随着AI在模式识别和自我改进方面的进步,它可能参与解决大型数学难题,如黎曼猜想。同时,数学家仍将在引导AI方向、规划研究领域和解释结果方面起关键作用。
大模型分不清“9.9和9.11哪个更大”的谜团,终于被可解释性研究揭秘了!
最近,字节在AI方面又搞了个大新闻。 一个字节的实习生,因为对团队资源分配不满,用恶意代码把模型训练过程给投了“毒”,字节这边损失不小