
免训练大模型知识编辑,吸收新数据更高效|EMNLP'24
免训练大模型知识编辑,吸收新数据更高效|EMNLP'24让大模型能快速、准确、高效地吸收新知识!
让大模型能快速、准确、高效地吸收新知识!
TimeMixer++是一个创新的时间序列分析模型,通过多尺度和多分辨率的方法在多个任务上超越了现有模型,展示了时间序列分析的新视角,在预测和分类等任务带来了更高的准确性和灵活性。
Janus 是 DeepSeek AI 开发的一个先进的多模态理解和生成框架,它通过创新性地解耦视觉编码路径来应对多模态理解和生成任务之间的需求冲突。
PUMA(emPowering Unified MLLM with Multi-grAnular visual generation)是一项创新的多模态大型语言模型(MLLM),由商汤科技联合来自香港中文大学、港大和清华大学的研究人员共同开发。它通过统一的框架处理和生成多粒度的视觉表示,巧妙地平衡了视觉生成任务中的多样性与可控性。
在当前内卷严重的实时目标检测 (Real-time Object Detection) 领域,性能与效率始终是难以平衡的核心问题。绝大多数现有的 SOTA 方法仅依赖于更先进的模块替换或训练策略,导致性能逐渐趋于饱和。
TS-Reasoner是一个创新的多步推理框架,结合了大型语言模型的上下文学习和推理能力,通过程序化多步推理、模块化设计、自定义模块生成和多领域数据集评估,有效提高了复杂时间序列任务的推理能力和准确性。实验结果表明,TS-Reasoner在金融决策、能源负载预测和因果关系挖掘等多个任务上,相较于现有方法具有显著的性能优势。
长视频理解迎来新纪元!智源联手国内多所顶尖高校,推出了超长视频理解大模型Video-XL。仅用一张80G显卡处理小时级视频,未来AI看懂电影再也不是难事。
时序大模型,参数规模突破十亿级别。 来自全球多只华人研究团队提出了一种基于混合专家架构(Mixture of Experts, MoE)的时间序列基础模型——Time-MoE。
OpenAI-o1替代品来了,大模型能根据任务复杂度进行不同时间的思考。 不限于推理性的逻辑或数学任务,一般问答也能思考的那种。 最近畅销书《Python机器学习》作者Sebastian Raschka推荐了一项新研究,被网友们齐刷刷码住了。
仅需1块80G显卡,大模型理解小时级超长视频。 智源研究院联合上海交通大学、中国人民大学、北京大学和北京邮电大学等多所高校带来最新成果超长视频理解大模型Video-XL。