
揭开大模型“伪遗忘”,港理工等团队:结构不变就是没忘
揭开大模型“伪遗忘”,港理工等团队:结构不变就是没忘近年来,大语言模型(LLMs)的能力突飞猛进,但随之而来的隐私风险也逐渐浮出水面。
近年来,大语言模型(LLMs)的能力突飞猛进,但随之而来的隐私风险也逐渐浮出水面。
不久前,GPT-4o 的最新图像风格化与编辑能力横空出世,用吉卜力等风格生成的效果令人惊艳,也让我们清晰看到了开源社区与商业 API 在图像风格化一致性上的巨大差距。
「尽管经过 SFT 的模型可能看起来在进行推理,但它们的行为更接近于模式模仿 —— 一种缺乏泛化推理能力的伪推理形式。」
如何让CLIP模型更关注细粒度特征学习,避免“近视”?360人工智能研究团队提出了FG-CLIP,可以明显缓解CLIP的“视觉近视”问题。让模型能更关注于正确的细节描述,而不是更全局但是错误的描述。
曾撼动Transformer统治地位的Mamba作者之一Tri Dao,刚刚带来新作——提出两种专为推理“量身定制”的注意力机制。
数据枯竭正成为AI发展的新瓶颈!CMU团队提出革命性方案SRT:让LLM实现无需人类标注的自我进化!SRT初期就能迭代提升数学与推理能力,甚至性能逼近传统强化学习的效果,揭示了其颠覆性潜力。
近段时间,已经出现了不少基于扩散模型的语言模型,而现在,基于扩散模型的视觉-语言模型(VLM)也来了,即能够联合处理视觉和文本信息的模型。今天我们介绍的这个名叫 LaViDa,继承了扩散语言模型高速且可控的优点,并在实验中取得了相当不错的表现。
来自香港中文大学、爱丁堡大学、香港科技大学与华为爱丁堡研究中心的研究团队联合发布了一项关于AI记忆机制的系统性综述,旨在在大模型时代背景下,重新审视并系统化理解智能体的记忆构建与演化路径。
研究者针对 few-shot 图像编辑提出一个新的自回归模型结构 ——InstaManip,并创新性地提出分组自注意力机制(group self-attention),在此任务上取得了优异的效果。
本想练练手合成点数据,没想到却一不小心干翻了PyTorch专家内核!斯坦福华人团队用纯CUDA-C写出的AI生成内核,瞬间惊艳圈内并登上Hacker News热榜。团队甚至表示:本来不想发这个结果的。