
清华&通院推出"绝对零"训练法,零外部数据大模型自我博弈解锁推理能力
清华&通院推出"绝对零"训练法,零外部数据大模型自我博弈解锁推理能力不用引入外部数据,通过自我博弈(Self-play)就能让预训练大模型学会推理?
不用引入外部数据,通过自我博弈(Self-play)就能让预训练大模型学会推理?
近年来,生成式人工智能(Generative AI)技术的突破性进展,特别是文本到图像 T2I 生成模型的快速发展,已经使 AI 系统能够根据用户输入的文本提示(prompt)生成高度逼真的图像。从早期的 DALL・E 到 Stable Diffusion、Midjourney 等模型,这一领域的技术迭代呈现出加速发展的态势。
多模态奖励模型(MRMs)在提升多模态大语言模型(MLLMs)的表现中起着至关重要的作用,在训练阶段可以提供稳定的 reward,评估阶段可以选择更好的 sample 结果,甚至单独作为 evaluator。
可控图片生成,如今已经不是什么新鲜事。甚至也不需要复杂的提示词,用户通过简单的文本描述,就能快速生成符合个人需求的创意图像。
近年来,基于视频生成模型的可交互世界生成引发了广泛关注。尽管现有方法在生成质量和交互能力上取得了显著进展,但由于上下文时间窗口受限,生成的世界在长时序下严重缺乏一致性。
长思维链让大模型具备了推理能力,但如果过度思考,就有可能成为负担。
Sora、可灵等视频生成模型令人惊艳的性能表现使得创作者仅依靠文本输入就能够创作出高质量的视频内容。然而,我们常见的电影片段通常是由导演在一个场景中精心布置多个目标的运动、摄像机拍摄角度后再剪辑而成的。例如,在拍摄赛车追逐的场景时,镜头通常跟随赛车运动,并通过扣人心弦的超车时刻来展示赛事的白热化。
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
本文详细介绍了斯坦福大学最新提出的"以弱驭强"(W4S)范式,这一创新方法通过训练轻量级的弱模型来优化强大语言模型的工作流。核心亮点包括:
E2B 的愿景很大,CEO 的目标是成为 AI Agent 时代的 AWS,成为一个自动化的 infra 平台,未来可以提供 GPU 支持,满足更复杂的数据分析、小模型训练、游戏生成等需求,并可以托管 agent 构建的应用,覆盖 agent 从开发到部署的完整生命周期。