AI资讯新闻榜单内容搜索-模型训练

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 模型训练
机械手真正「活」了,银河通用&清华推出DexNDM,用神经动力学重塑灵巧操作

机械手真正「活」了,银河通用&清华推出DexNDM,用神经动力学重塑灵巧操作

机械手真正「活」了,银河通用&清华推出DexNDM,用神经动力学重塑灵巧操作

机器人使用灵巧手帮人类在工厂里拧螺丝,在家里切菜做饭的一天何时可以到来?为了实现这一愿景,旨在解决灵巧操作技能 sim-to-real 难题的 DexNDM 应运而生。

来自主题: AI技术研报
6717 点击    2025-11-06 15:01
距离觉醒意识,人工智能还差一具肉身?

距离觉醒意识,人工智能还差一具肉身?

距离觉醒意识,人工智能还差一具肉身?

当AI能写诗、能编程,甚至能和你争论哲学,它会不会真的“有感觉”?它会不会像你一样,体验到红色的炙热或痛苦的尖锐?

来自主题: AI技术研报
5820 点击    2025-11-06 15:00
扩展外部测试时Scaling Law,中关村学院新发现:轻量级验证器可解锁LLM推理最优选择

扩展外部测试时Scaling Law,中关村学院新发现:轻量级验证器可解锁LLM推理最优选择

扩展外部测试时Scaling Law,中关村学院新发现:轻量级验证器可解锁LLM推理最优选择

在大语言模型(LLM)席卷各类复杂任务的今天,“测试时扩展”(Test-Time Scaling,TTS)已成为提升模型推理能力的核心思路 —— 简单来说,就是在模型 “答题” 时分配更多的计算资源来让它表现更好。严格来说,Test-Time Scaling 分成两类:

来自主题: AI技术研报
7404 点击    2025-11-06 14:59
大模型不擅长点鼠标?中科院团队打造AI专属交互界面,任务成功率提升67%

大模型不擅长点鼠标?中科院团队打造AI专属交互界面,任务成功率提升67%

大模型不擅长点鼠标?中科院团队打造AI专属交互界面,任务成功率提升67%

在日常使用电脑时,看着屏幕、点击鼠标是再自然不过的基本操作。但这种对人类明明很容易的操作方式,却成为 AI 的巨大挑战:它们视力差、动作慢、不擅长看也不擅长点。

来自主题: AI技术研报
5837 点击    2025-11-06 10:32
NeurIPS 2025 Spotlight | 你刷到的视频是真的么?用物理规律拆穿Sora谎言

NeurIPS 2025 Spotlight | 你刷到的视频是真的么?用物理规律拆穿Sora谎言

NeurIPS 2025 Spotlight | 你刷到的视频是真的么?用物理规律拆穿Sora谎言

随着生成式 AI(如 Sora)的发展,合成视频几乎可以以假乱真,带来了深度伪造与虚假信息传播的风险。现有检测方法多依赖表层伪影或数据驱动学习,难以在高质量生成视频中保持较好的泛化能力。其根本原因在于,这些方法大都未能充分利用自然视频所遵循的物理规律,挖掘自然视频的更本质的特征。

来自主题: AI技术研报
8880 点击    2025-11-06 09:39
多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus

多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus

多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus

静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。

来自主题: AI技术研报
8010 点击    2025-11-06 09:33
数字生命「培养皿」里,AI竟然学会了打架、结盟、抢地盘

数字生命「培养皿」里,AI竟然学会了打架、结盟、抢地盘

数字生命「培养皿」里,AI竟然学会了打架、结盟、抢地盘

一直以来,关于人工生命(Artificial Life, ALife)的研究致力于回答这样一个问题:生命的复杂性能否在计算系统中自然涌现?

来自主题: AI技术研报
7298 点击    2025-11-05 17:22
清北联合推出Motion Transfer,比肩Gemini Robotics,让机器人直接从人类数据中端到端学习技能

清北联合推出Motion Transfer,比肩Gemini Robotics,让机器人直接从人类数据中端到端学习技能

清北联合推出Motion Transfer,比肩Gemini Robotics,让机器人直接从人类数据中端到端学习技能

近期,Google DeepMind 发布新一代具身大模型 Gemini Robotics 1.5,其核心亮点之一便是被称为 Motion Transfer Mechanism(MT)的端到端动作迁移算法 —— 无需重新训练,即可把不同形态机器人的技能「搬」到自己身上。不过,官方技术报告对此仅一笔带过,细节成谜。

来自主题: AI技术研报
8379 点击    2025-11-05 16:39