
7x24小时非人类科学家入场:当AI开始自主探索科学未知领域 | 多伦多大学
7x24小时非人类科学家入场:当AI开始自主探索科学未知领域 | 多伦多大学自主通才科学家(AGS)正成为现实!
自主通才科学家(AGS)正成为现实!
大型语言模型(LLMs)在广泛的自然语言处理(NLP)任务中展现出了卓越的能力。
「工欲善其事,必先利其器。」 如今,人工智能正以前所未有的速度革新人类认知的边界,而工具的高效应用已成为衡量人工智能真正智慧的关键标准。
最近,DeepSeek-R1 和 OpenAI o1/03 等推理大模型在后训练阶段探索了长度扩展(length scaling),通过强化学习(比如 PPO、GPRO)训练模型生成很长的推理链(CoT),并在奥数等高难度推理任务上取得了显著的效果提升。
自回归模型,首次生成2048×2048分辨率图像!来自Meta、西北大学、新加坡国立大学等机构的研究人员,专门为多模态大语言模型(MLLMs)设计的TokenShuffle,显著减少了计算中的视觉Token数量,提升效率并支持高分辨率图像合成。
LLM的规模爆炸式增长,传统量化技术虽能压缩模型,却以牺牲精度为代价。莱斯大学团队的最新研究DFloat11打破这一僵局:它将模型压缩30%且输出与原始模型逐位一致!更惊艳的是,通过针对GPU的定制化解压缩内核,DFloat11使推理吞吐量提升最高38.8倍。
今天的Agent框架虽然功能强大,但对于没有编程经验的客户服务专业人员来说却过于复杂。这些框架如AutoGen、LangGraph、CrewAI等通常将Agent声明嵌入到复杂的Python代码中,使整体工作流程难以把握,门槛过高。对于仅需构建带有业务逻辑的客服聊天机器人的非技术人员而言,这些框架犹如天书,让他们望而却步。
本文提出 LUFFY 强化学习方法,一种结合离线专家示范与在线强化学习的推理训练范式,打破了“模仿学习只学不练、强化学习只练不学”的传统壁垒。LUFFY 通过将高质量专家示范制定为一种离策略指引,并引入混合策略优化与策略塑形机制,稳定地实现了在保持探索能力的同时高效吸收强者经验。
香港中文大学(深圳)的研究团队发布TASTE-Rob数据集,含100856个精准匹配语言指令的交互视频,助力机器人通过模仿学习提升操作泛化能力。团队还开发三阶段视频生成流程,优化手部姿态,显著提升视频真实感和机器人操作准确度。
OpenAI 的 o1 系列模型、Deepseek-R1 带起了推理模型的研究热潮,但这些推理模型大多关注数学、代码等专业领域。