把超算装进背包:ThinkStation PGX重新定义AI开发者的生产力边界
把超算装进背包:ThinkStation PGX重新定义AI开发者的生产力边界随着AI浪潮的袭来,笔者本人以及团队都及时的调整了业务方向,转型为一名AI开发者和AI产品开发团队,常常需要微调大模型注入业务场景依赖的私域知识,然后再把大模型部署上线进行推理,以支撑业务智能体或智能问答产品的逻辑流程。
随着AI浪潮的袭来,笔者本人以及团队都及时的调整了业务方向,转型为一名AI开发者和AI产品开发团队,常常需要微调大模型注入业务场景依赖的私域知识,然后再把大模型部署上线进行推理,以支撑业务智能体或智能问答产品的逻辑流程。
前不久我写了一篇百度最新的OCR模型(PaddleOCR-VL)的文章反响还不错。
北大华为联手推出KV cache管理新方式,推理速度比前SOTA提升4.7倍! 大模型处理长序列时,KV cache的内存占用随序列长度线性增长,已成为制约模型部署的严峻瓶颈。
AI公务员的大脑就是政务大模型。 就在刚刚,中央网信办和国。就在刚刚,中央网信办和国家发展改革委联合印发了重磅文件——《政务领域人工智能大模型部署应用指引》(我们后面就叫它《指引》)。
在一场视觉算法挑战中,一组参赛团队将道路识别模型部署至在轨卫星,完成了从图像采集、模型推理到结构化结果回传的全过程。 图像未落地,模型也并未运行在地面,所有计算任务均在轨道上完成,最终仅回传识别结果。
在移动计算时代,将高效的自然语言处理模型部署到资源受限的边缘设备上面临巨大挑战。这些场景通常要求严格的隐私合规、实时响应能力和多任务处理功能。
边缘-云协同计算通过整合边缘节点和云端资源,解决了传统云计算的延迟和带宽问题,推动了分布式智能和模型优化的发展。最新综述论文系统梳理了ECCC的架构设计、模型优化、资源管理、隐私安全和实际应用,提出了统一的分布式智能与模型优化框架,为未来研究提供了方向,包括大语言模型部署、6G整合和量子计算等前沿技术。
为什么 DeepSeek-V3 据说在大规模服务时快速且便宜,但本地运行时却太慢且昂贵?为什么有些 AI 模型响应很慢,但一旦开始运行就变得很快?
AI非上云不可、非集群不能?万字实测告诉你,32B卡不卡?70B是不是智商税?要几张卡才能撑住业务? 全网最全指南教你如何用最合适的配置,跑出最强性能。
在当前大模型推理愈发复杂的时代,如何快速、高效地产生超长文本,成为了模型部署与优化中的一大核心挑战。