
ICLR 2025|首个动态视觉-文本稀疏化框架来了,计算开销直降50%-75%
ICLR 2025|首个动态视觉-文本稀疏化框架来了,计算开销直降50%-75%多模态大模型(MLLMs)在视觉理解与推理等领域取得了显著成就。然而,随着解码(decoding)阶段不断生成新的 token,推理过程的计算复杂度和 GPU 显存占用逐渐增加,这导致了多模态大模型推理效率的降低。
来自主题: AI技术研报
5887 点击 2025-04-29 14:56
多模态大模型(MLLMs)在视觉理解与推理等领域取得了显著成就。然而,随着解码(decoding)阶段不断生成新的 token,推理过程的计算复杂度和 GPU 显存占用逐渐增加,这导致了多模态大模型推理效率的降低。
随着图像编辑工具和图像生成技术的快速发展,图像处理变得非常方便。然而图像在经过处理后不可避免的会留下伪影(操作痕迹),这些伪影可分为语义和非语义特征。
该研究主要探讨了大语言模型的全局剪枝方法,旨在提高预训练语言模型的效率。该成果的发表为大模型的剪枝与优化研究提供了新的视角,并在相关领域具有重要的应用潜力。
大语言模型之大,成本之高,让模型的稀疏化变得至关重要。
对于大型视觉语言模型(LVLM)而言,扩展模型可以有效提高模型性能。然而,扩大参数规模会显著增加训练和推理成本,因为计算中每个 token 都会激活所有模型参数。