多模态模型学会“按需搜索”,少搜30%还更准!字节&NTU新研究优化多模态模型搜索策略
多模态模型学会“按需搜索”,少搜30%还更准!字节&NTU新研究优化多模态模型搜索策略多模态模型学会“按需搜索”!字节&NTU最新研究,优化多模态模型搜索策略——通过搭建网络搜索工具、构建多模态搜索数据集以及涉及简单有效的奖励机制,首次尝试基于端到端强化学习的多模态模型自主搜索训练。
多模态模型学会“按需搜索”!字节&NTU最新研究,优化多模态模型搜索策略——通过搭建网络搜索工具、构建多模态搜索数据集以及涉及简单有效的奖励机制,首次尝试基于端到端强化学习的多模态模型自主搜索训练。
上海交通大学研究团队提出了一种融合无人机物理建模与深度学习的端到端方法,该研究首次将可微分物理训练的策略成功部署到现实机器人中,实现了无人机集群自主导航,并在鲁棒性、机动性上大幅领先现有的方案。
近年来,基于智能体的强化学习(Agent + RL)与智能体优化(Agent Optimization)在学术界引发了广泛关注。然而,实现具备工具调用能力的端到端智能体训练,首要瓶颈在于高质量任务数据的极度稀缺。
在高质量视频生成任务中,扩散模型(Diffusion Models)已经成为主流。然而,随着视频长度和分辨率的提升,Diffusion Transformer(DiT)模型中的注意力机制计算量急剧增加,成为推理效率的最大瓶颈。
这款 Agent 擅长多轮搜索和推理,平均每项任务执行 23 个推理步骤,访问超过 200 个网址。它是基于 Kimi k 系列模型的内部版本构建,并完全通过端到端智能体强化学习进行训练,也是国内少有的基于自研模型打造的 Agent。
人人都绕不开的推荐系统,如今正被注入新的 AI 动能。 随着 AI 领域掀起一场由大型语言模型(LLM)引领的生成式革命,它们凭借着强大的端到端学习能力、海量数据理解能力以及前所未有的内容生成潜力,开始重塑各领域的传统技术栈。
生成模型会重现识别模型的历史吗?
只需要动动嘴就可以驱动GUI代理?
当碳基生物还在为写文献综述,打开了一百个浏览器窗口时,隔壁AI已经卷起来了。(doge)
随着生成式人工智能技术的快速发展,大语言模型 (LLM) 正逐步成为推动智能设备升级的核心力量。乐鑫科技携手火山引擎扣子大模型团队,共同推出智能 AI 开发套件 —— EchoEar(喵伴)。该套件以端到端开发为核心理念,构建起从硬件接入、智能体构建到生态联动的一站式开发流程,为开发者提供了一条高效、开放、具备可复制性的落地路径。