
Meta 联合纽约大学和华盛顿大学提出MetaCLIP,带你揭开CLIP的高质量数据之谜。
Meta 联合纽约大学和华盛顿大学提出MetaCLIP,带你揭开CLIP的高质量数据之谜。自2021年诞生,CLIP已在计算机视觉识别系统和生成模型上得到了广泛的应用和巨大的成功。我们相信CLIP的创新和成功来自其高质量数据(WIT400M),而非模型或者损失函数本身。虽然3年来CLIP有大量的后续研究,但并未有研究通过对CLIP进行严格的消融实验来了解数据、模型和训练的关系。
自2021年诞生,CLIP已在计算机视觉识别系统和生成模型上得到了广泛的应用和巨大的成功。我们相信CLIP的创新和成功来自其高质量数据(WIT400M),而非模型或者损失函数本身。虽然3年来CLIP有大量的后续研究,但并未有研究通过对CLIP进行严格的消融实验来了解数据、模型和训练的关系。
近期,大语言模型、文生图模型等大规模 AI 模型迅猛发展。在这种形势下,如何适应瞬息万变的需求,快速适配大模型至各类下游任务,成为了一个重要的挑战。受限于计算资源,传统的全参数微调方法可能会显得力不从心,因此需要探索更高效的微调策略。
指代分割 (Referring Image Segmentation,RIS) 是一项极具挑战性的多模态任务,要求算法能够同时理解精细的人类语言和视觉图像信息,并将图像中句子所指代的物体进行像素级别的分割。
指代分割 (Referring Image Segmentation,RIS) 是一项极具挑战性的多模态任务,要求算法能够同时理解精细的人类语言和视觉图像信息,并将图像中句子所指代的物体进行像素级别的分割。
近年来,随着人工智能技术的飞速发展,各类AI工具如雨后春笋般窜出。继百模大战后又即将开启AI工具大战,只不过百模大战拼的是算法、算力,而AI工具大战拼的则是用户数。
大家相互薅羊毛,要用,但要小心用,一不小心就尴尬了。 一位国产大模型算法工程师在接受「甲子光年」采访时的吐槽,可以说是非常到位了。 它准确地阐述 AI 业内一个所有人「心照不宣」的公开秘密。
近期,硅谷 AI 公司 OpenAI 可谓是话题度拉满,先是一出「宫斗戏」引起舆论哗然,后是公布 Sora 效果炸裂受到了全网的一致好评。在这期间,一桩诉讼案件同样引爆了热点 —— 因 ChatGPT 涉嫌侵犯纽约时报著作权,OpenAI 及微软被起诉并要求支付巨额版权费 [1]。
Karger 算法可以在时间为 O (m log^3n) 的图中找到一个最小割点,他们将这个时间称之为近线性时间,意思是线性乘以一个多对数因子
人类嗅觉的数字化,它来了! 当今的计算机算法,尤其是AI技术,几乎已经把人类的视觉和听觉完全虚拟化了。
以神经网络为基础的深度学习技术已经在诸多应用领域取得了有效成果