
当大模型汲取进化记忆,它离“人性”还有多远?
当大模型汲取进化记忆,它离“人性”还有多远?大语言模型(LLMs)作为由复杂算法和海量数据驱动的产物,会不会“无意中”学会了某些类似人类进化出来的行为模式?这听起来或许有些大胆,但背后的推理其实并不难理解:
大语言模型(LLMs)作为由复杂算法和海量数据驱动的产物,会不会“无意中”学会了某些类似人类进化出来的行为模式?这听起来或许有些大胆,但背后的推理其实并不难理解:
第一财经「新皮层」独家获得消息称,小红书已将内部大模型技术与应用产品团队升级为「hi lab」(人文智能实验室,Humane Intelligence Lab)。同时,小红书今年年初开始组建「AI人文训练师」团队,邀请有深厚人文背景的研究者与AI领域的算法工程师、科学家共同完成对AI的后训练,以训练AI具有更好的人文素养以及表现上的一致性。而这个「AI人文训练师」团队也隶属于「hi lab」。
大模型巨无霸体量,让端侧部署望而却步?华为联手中科大提出CBQ新方案,仅用0.1%的训练数据实现7倍压缩率,保留99%精度。
1986年,图灵奖得主Fred Brooks在软件工程领域提出了著名的"没有银弹"理论:没有任何一种技术或方法能够独自带来软件工程生产力的数量级提升。近四十年后,这个深刻洞察在AI领域再次得到验证——你是否也曾经历过这样的挫折:
自 Anthropic 推出 Claude Computer Use,打响电脑智能体(Computer Use Agent)的第一枪后,OpenAI 也相继推出 Operator,用强化学习(RL)算法把电脑智能体的能力推向新高,引发全球范围广泛关注。
本文详细解读了 Kimi k1.5、OpenReasonerZero、DAPO 和 Dr. GRPO 四篇论文中的创新点,读完会对 GRPO 及其改进算法有更深的理解,进而启发构建推理模型的新思路。
在谷歌I/O大会后,创始人谢尔盖·布林惊喜现身,与Hassabis深入探讨AI的推理能力、规模与算法、测试时计算及多模态智能体的应用前景。布林强调AI时代是计算科学家不应退休的黄金期,AI影响将远超互联网与手机。
人工智能正以前所未有的速度改变世界,但其背后的核心机制,远不止于复杂的算法和算力堆叠。本文从神经科学先驱约翰·霍普菲尔德(John Hopfield)的研究出发,追溯深度学习的发展脉络,揭示一个令人意想不到的事实:许多现代AI模型的理论基础,源自上世纪物理学家研究磁性材料时提出的“自旋玻璃”模型。
在端侧设备上处理长文本常常面临计算和内存瓶颈。
在麻省理工学院工作的好处之一,是能够窥见未来科技的轮廓——从量子计算的突破、可持续性能源的生产,到新型抗生素设计。若问我是否对这些领域都有深刻理解?答案是否定的。但当研究者邀请我为他们的工作拍摄纪实图像时,我能够理解其中的大部分内容。