
ICML 2025 | 长视频理解新SOTA!蚂蚁&人大开源ViLAMP-7B,单卡可处理3小时视频
ICML 2025 | 长视频理解新SOTA!蚂蚁&人大开源ViLAMP-7B,单卡可处理3小时视频在视觉语言模型(Vision-Language Models,VLMs)取得突破性进展的当下,长视频理解的挑战显得愈发重要。以标准 24 帧率的标清视频为例,仅需数分钟即可产生逾百万的视觉 token,这已远超主流大语言模型 4K-128K 的上下文处理极限。
在视觉语言模型(Vision-Language Models,VLMs)取得突破性进展的当下,长视频理解的挑战显得愈发重要。以标准 24 帧率的标清视频为例,仅需数分钟即可产生逾百万的视觉 token,这已远超主流大语言模型 4K-128K 的上下文处理极限。
在复杂、未知的现实环境中,传统导航方法往往依赖闭集语义或事先构建的地图,难以实现真正的“按需探索”。为打破这一瓶颈,本文提出了 FindAnything ——一套融合视觉语言模型的对象为中心、开放词汇三维建图与探索系统。
通过蒙特卡洛树搜索筛选高难度样本,ThinkLite-VL仅用少量数据就能显著提升视觉语言模型的推理能力,无需知识蒸馏,为高效训练提供了新思路。
通过蒙特卡洛树搜索筛选高难度样本,ThinkLite-VL仅用少量数据就能显著提升视觉语言模型的推理能力,无需知识蒸馏,为高效训练提供了新思路。
最近,来自大连理工和莫纳什大学的团队提出了物理真实的视频生成框架 VLIPP。通过利用视觉语言模型来将物理规律注入到视频扩散模型的方法来提升视频生成中的物理真实性。
EgoNormia基准可以评估视觉语言模型在物理社会规范理解方面能力,从结果上看,当前最先进的模型在规范推理方面仍远不如人类,主要问题在于规范合理性和优先级判断上的不足。
当前,视觉语言模型(VLMs)的能力边界不断被突破,但大多数评测基准仍聚焦于复杂知识推理或专业场景。本文提出全新视角:如果一项能力对人类而言是 “无需思考” 的本能,但对 AI 却是巨大挑战,它是否才是 VLMs 亟待突破的核心瓶颈?
武汉大学等发布了一篇大型视觉语言模型(LVLMs)安全性的综述论文,提出了一个系统性的安全分类框架,涵盖攻击、防御和评估,并对最新模型DeepSeek Janus-Pro进行了安全性测试,发现其在安全性上存在明显短板。
通过针对视觉的细分类、目标检测等任务设计对应的规则奖励,Visual-RFT 打破了 DeepSeek-R1 方法局限于文本、数学推理、代码等少数领域的认知,为视觉语言模型的训练开辟了全新路径!
模型安全和可靠性、系统整合和互操作性、用户交互和认证…… 当“多模态”“跨模态”成为不可阻挡的AI趋势时,多模态场景下的安全挑战尤其应当引发产学研各界的注意。