AI资讯新闻榜单内容搜索-训练

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 训练
蒸馏任何深度,仅用少量无标签数据就能实现单目深度估计新SOTA

蒸馏任何深度,仅用少量无标签数据就能实现单目深度估计新SOTA

蒸馏任何深度,仅用少量无标签数据就能实现单目深度估计新SOTA

单目深度估计新成果来了!西湖大学AGI实验室等提出了一种创新性的蒸馏算法,成功整合了多个开源单目深度估计模型的优势。在仅使用2万张无标签数据的情况下,该方法显著提升了估计精度,并刷新了单目深度估计的最新SOTA性能。

来自主题: AI技术研报
8000 点击    2025-02-28 15:40
机器人诞生「运动自我意识」,哥大华人登Nature子刊:照镜子学会自我建模

机器人诞生「运动自我意识」,哥大华人登Nature子刊:照镜子学会自我建模

机器人诞生「运动自我意识」,哥大华人登Nature子刊:照镜子学会自我建模

近日,来自哥大的研究人员开发出了一种新AI系统,让机器人通过普通摄像头和深度神经网络实现自我建模、运动规划和自我修复,突破了传统机器人依赖工程师调整的局限,使机器人能像人类一样自主学习和适应环境变化,为具身智能发展带来新范式。

来自主题: AI技术研报
8229 点击    2025-02-28 15:32
超越DeepSeek推理,效率更高!斯坦福马腾宇新作:有限数据,无限迭代

超越DeepSeek推理,效率更高!斯坦福马腾宇新作:有限数据,无限迭代

超越DeepSeek推理,效率更高!斯坦福马腾宇新作:有限数据,无限迭代

STP(自博弈定理证明器)让模型扮演「猜想者」和「证明者」,互相提供训练信号,在有限的数据下实现了无限自我改进,在Lean和Isabelle验证器上的表现显著优于现有方法,证明成功率翻倍,并在多个基准测试中达到最先进的性能。

来自主题: AI技术研报
3960 点击    2025-02-28 15:21
无需训练让扩散模型提速2倍,上交大提出Token级缓存方案|ICLR‘25

无需训练让扩散模型提速2倍,上交大提出Token级缓存方案|ICLR‘25

无需训练让扩散模型提速2倍,上交大提出Token级缓存方案|ICLR‘25

Diffusion Transformer模型模型通过token粒度的缓存方法,实现了图像和视频生成模型上无需训练的两倍以上的加速。

来自主题: AI技术研报
6182 点击    2025-02-28 15:06
ICLR 2025|浙大、千问发布预训练数据管理器DataMan,53页细节满满

ICLR 2025|浙大、千问发布预训练数据管理器DataMan,53页细节满满

ICLR 2025|浙大、千问发布预训练数据管理器DataMan,53页细节满满

在 Scaling Law 背景下,预训练的数据选择变得越来越重要。然而现有的方法依赖于有限的启发式和人类的直觉,缺乏全面和明确的指导方针。在此背景下,该研究提出了一个数据管理器 DataMan,其可以从 14 个质量评估维度对 15 个常见应用领域的预训练数据进行全面质量评分和领域识别。

来自主题: AI技术研报
8319 点击    2025-02-28 14:04
深度|硅谷明星华裔投资人谈DeepSeek:AI模型训练和推理成本在过去18个月180倍成本降低,推动更多开源项目涌现

深度|硅谷明星华裔投资人谈DeepSeek:AI模型训练和推理成本在过去18个月180倍成本降低,推动更多开源项目涌现

深度|硅谷明星华裔投资人谈DeepSeek:AI模型训练和推理成本在过去18个月180倍成本降低,推动更多开源项目涌现

AI模型的训练和推理成本在过去18个月内大幅下降,达到180倍的成本降低。这一趋势推动了更多开源项目的涌现。

来自主题: AI资讯
6205 点击    2025-02-28 13:56
DeepSeek第五弹炸裂收官!开源全新并行文件系统,榨干SSD全部带宽

DeepSeek第五弹炸裂收官!开源全新并行文件系统,榨干SSD全部带宽

DeepSeek第五弹炸裂收官!开源全新并行文件系统,榨干SSD全部带宽

DeepSeek开源周,今日正式收官!内容依旧惊喜且重磅,直接公开了V3和R1训练推理过程中用到的文件系统。Fire-Flyer文件系统(简称3FS,第三个F代表File),一种利用现代SSD和RDMA网络的全部带宽的并行文件系统;

来自主题: AI资讯
8051 点击    2025-02-28 10:59
自动提示词优化系统综述,APO被AWS定义为5个部分 | 最新

自动提示词优化系统综述,APO被AWS定义为5个部分 | 最新

自动提示词优化系统综述,APO被AWS定义为5个部分 | 最新

本文是对亚马逊AWS研究团队最新发表的APO(自动提示词优化)技术综述的深度解读。该研究由Kiran Ramnath、Kang Zhou等21位来自AWS的资深研究者共同完成,团队成员来自不同技术背景,涵盖了机器学习、自然语言处理、系统优化等多个专业领域。

来自主题: AI技术研报
5378 点击    2025-02-28 10:11
西湖大学提出闭环扩散控制策略,高效与闭环兼得

西湖大学提出闭环扩散控制策略,高效与闭环兼得

西湖大学提出闭环扩散控制策略,高效与闭环兼得

高效闭环控制是复杂系统控制的核心要求。传统控制方法受限于效率与适用性挑战;而新兴的扩散模型虽然表现出色,却难以满足高效闭环控制的要求。西湖大学研究团队最新提出的 CL-DiffPhyCon 框架,通过异步并行去噪技术,在闭环控制要求下,显著提升了控制效率和效果。论文最近被人工智能领域顶级会议 ICLR 2025 接收。

来自主题: AI资讯
5188 点击    2025-02-28 09:48