
加速近5倍!北大与字节团队提出BranchGRPO,用「树形分叉 + 剪枝」重塑扩散模型对齐
加速近5倍!北大与字节团队提出BranchGRPO,用「树形分叉 + 剪枝」重塑扩散模型对齐近期,北京大学与字节团队提出了名为 BranchGRPO 的新型树形强化学习方法。不同于顺序展开的 DanceGRPO,BranchGRPO 通过在扩散反演过程中引入分叉(branching)与剪枝(pruning),让多个轨迹共享前缀、在中间步骤分裂,并通过逐层奖励融合实现稠密反馈。
近期,北京大学与字节团队提出了名为 BranchGRPO 的新型树形强化学习方法。不同于顺序展开的 DanceGRPO,BranchGRPO 通过在扩散反演过程中引入分叉(branching)与剪枝(pruning),让多个轨迹共享前缀、在中间步骤分裂,并通过逐层奖励融合实现稠密反馈。
最近,美团在AI开源赛道上在猛踩加速。今天,在开源其首款大语言模型仅仅24天后,美团又开源了其首款自研推理模型LongCat-Flash-Thinking。与其基础模型LongCat-Flash类似,效率也是LongCat-Flash-Thinking的最大特点。美团在技术报告中透露,LongCat-Flash-Thinking在自研的DORA强化学习基础设施完成训练
Scale AI的新软件工程基准SWE-BENCH PRO,出现反转!表面上看,“御三家”集体翻车,没一家的解决率超过25%: GPT-5、Claude Opus 4.1、Gemini 2.5分别以23.3%、22.7%、13.5%的解决率“荣”登前三。
Tool-Calling作为Agent的核心模块,智能体的双手,这项关键能力允许 LLM 调用外部函数,例如应用程序接口(APIs)、数据库、计算器和搜索引擎,决定了AI Agent的可执行边界。
构建一个工业级高仿真 3D 虚拟世界,需要投入多少时间与人力?如果仅需一段描述、一张草图,AI 便可快速自动生成 —— 你相信吗?
近来,由AI生成的视频片段以前所未有的视觉冲击力席卷了整个互联网,视频生成模型创造出了许多令人惊叹的、几乎与现实无异的动态画面。
这一瓶颈如今被打破。小米正式开源首个原生端到端语音模型——Xiaomi-MiMo-Audio,它基于创新预训练架构和上亿小时训练数据,首次在语音领域实现基于 ICL 的少样本泛化,并在预训练观察到明显的“涌现”行为。
近日,明略科技推出的基于多模态基础模型的网页 GUI 智能体 Mano,凭借其强大的性能,在行业内公认的两大挑战基准 ——Mind2Web 和 OSWorld 上同时刷新纪录,取得当前最佳成绩(SOTA)。
基于这一挑战,我们提出了 Mini-Omni-Reasoner——一种专为对话场景打造的实时推理新范式。它通过「Thinking-in-Speaking」实现边思考边表达,既能实时反馈、输出自然流畅的语音内容,又能保持高质量且可解释的推理过程。
阿里巴巴集团安全部联合清华大学、复旦大学、东南大学、新加坡南洋理工等高校,联合发布技术报告;其理念与最近OpenAI发布的GPT-5 System Card放在首位的“From Hard Refusals to Safe-Completions”理念不谋而合。