EmbodiChain开源,用100%生成式数据自动训练具身智能模型
EmbodiChain开源,用100%生成式数据自动训练具身智能模型大语言模型的爆发,让大家见证了 Scaling Law 的威力:只要数据够多、算力够猛,智能似乎就会自动涌现。但在机器人领域,这个公式似乎失效了。
大语言模型的爆发,让大家见证了 Scaling Law 的威力:只要数据够多、算力够猛,智能似乎就会自动涌现。但在机器人领域,这个公式似乎失效了。
我们进入了一个模型不再只是“工具”的时代。真正的突破,不在于它能做多少事,而在于它是否能读懂你的意图、情绪与沉默。
不要被AI的温柔表象欺骗! Anthropic最新研究刺穿了AGI的温情假象:你以为在和良师益友倾诉,其实是在悬崖边给「杀手」松绑。 当脆弱情感遇上激活值坍塌,RLHF防御层将瞬间溃缩。既然无法教化野兽,人类只能选择最冷酷的「赛博脑叶切除术」。
上下文分割(In-Context Segmentation)旨在通过参考示例指导模型实现对特定目标的自动化分割。尽管 SAM 凭借卓越的零样本泛化能力为此提供了强大的基础,但将其应用于此仍受限于提示(如点或框)构建,这样的需求不仅制约了批量推理的自动化效率,更使得模型在处理复杂的连续视频时,难以维持时空一致性。
最新综述首次系统探讨LLM控制机器人的安全威胁、防御机制与未来挑战,指出LLM的具身鸿沟导致其在物理空间可能执行危险动作,而现有防御体系存在逻辑与物理脱节等问题。
元旦期间,DeepSeek 发布的 mHC 震撼了整个 AI 社区。
无需真实奖励,哪怕用随机、错误的信号进行训练,大模型准确率也能大幅提升?
别再看「鉴AI攻略」了!当AI学会故意写错别字、流露人味,我们的直觉早已全线崩盘。这不只是技术的进化,更是一场关于平庸的生存危机。AI正在拼命演人,而我们却在越活越像机器。
让大模型轻松处理比自身上下文窗口长两个数量级的超长文本!
ICLR 2026 的 Rebuttal 结束了。当 OpenReview 上的喧嚣散去,我们发现,作者与审稿人之间漫长的拉锯战,最终往往只剩下一个核心分歧:「这个想法,以前真的没人做过吗?」