近日,来自谷歌和苹果的研究表明:AI模型掌握的知识比表现出来的要多得多!这些真实性信息集中在特定的token中,利用这一属性可以显著提高检测LLM错误输出的能力。
LLM训练速度还可以再飙升20倍!英伟达团队祭出全新架构归一化Transformer(nGPT),上下文越长,训练速度越快,还能维持原有精度。
大型语言模型(LLMs)虽然在适应新任务方面取得了长足进步,但它们仍面临着巨大的计算资源消耗,尤其在复杂领域的表现往往不尽如人意。
牛顿没解决的问题,AI给你解决了? AI的推理能力一直是研究的焦点。作为最纯粹、要求最高的推理形式之一,能否解决高级的数学问题,无疑是衡量语言模型推理水平的一把尺。
在当今人工智能(AI)和机器学习(ML)技术迅猛发展的背景下,解释性AI(Explainable AI, XAI)已成为一个备受关注的话题。
多模态生成新突破,字节&华师团队打造TextHarmony,在单一模型架构中实现模态生成的统一,并入选NeurIPS 2024。
机器人控制和自动驾驶的离线数据损坏问题有解了! 中科大王杰教授团队 (MIRA Lab) 提出了一种变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性。
苹果研究者发现:无论是OpenAI GPT-4o和o1,还是Llama、Phi、Gemma和Mistral等开源模型,都未被发现任何形式推理的证据,而更像是复杂的模式匹配器。无独有偶,一项多位数乘法的研究也被抛出来,越来越多的证据证实:LLM不会推理!
最近,大模型训练遭恶意攻击事件已经刷屏了。就在刚刚,Anthropic也发布了一篇论文,探讨了前沿模型的巨大破坏力,他们发现:模型遇到危险任务时会隐藏真实能力,还会在代码库中巧妙地插入bug,躲过LLM和人类「检查官」的追踪!