
MoCha:开启自动化多轮对话电影生成新时代
MoCha:开启自动化多轮对话电影生成新时代近年来,视频生成技术在动作真实性方面取得了显著进展,但在角色驱动的叙事生成这一关键任务上仍存在不足,限制了其在自动化影视制作与动画创作中的应用潜力。
近年来,视频生成技术在动作真实性方面取得了显著进展,但在角色驱动的叙事生成这一关键任务上仍存在不足,限制了其在自动化影视制作与动画创作中的应用潜力。
动作捕捉,刚刚发生了革命。
当前搜索AI市场面临着一个显著的断层:Perplexity的Sonar Reasoning Pro和OpenAI的GPT-4o Search Preview等专有解决方案与开源替代品之间存在巨大差距。这些封闭式系统虽然表现优异,但却限制了透明度、创新和创业自由。作为一名正在开发Agent产品的工程师,你是否曾经渴望拥有一个功能强大且完全开放的搜索框架?
想象一下,一座生机勃勃的 3D 城市在你眼前瞬间成型 —— 没有漫长的计算,没有庞大的存储需求,只有极速的生成和惊人的细节。
近年来,大语言模型(LLM)的性能提升逐渐从训练时规模扩展转向推理阶段的优化,这一趋势催生了「测试时扩展(test-time scaling)」的研究热潮。
语言是离散的,所以适合用自回归模型来生成;而图像是连续的,所以适合用扩散模型来生成。在生成模型发展早期,这种刻板印象广泛存在于很多研究者的脑海中。
文生图 or 图生文?不必纠结了!
最新研究发现,LLM在面对人格测试时,会像人一样「塑造形象」,提升外向性和宜人性得分。AI的讨好倾向,可能导致错误的回复,需要引起警惕。
大模型虽然推理能力增强,却常常「想太多」,回答简单问题也冗长复杂。Rice大学的华人研究者提出高效推理概念,探究了如何帮助LLM告别「过度思考」,提升推理效率。
最近,像 OpenAI o1/o3、DeepSeek-R1 这样的大型推理模型(Large Reasoning Models,LRMs)通过加长「思考链」(Chain-of-Thought,CoT)在推理任务上表现惊艳。