Gemini准确率从21%飙到97%!谷歌只用了这一招:复制粘贴
Gemini准确率从21%飙到97%!谷歌只用了这一招:复制粘贴简单到难以置信!近日,Google Research一项新研究发现:想让大模型在不启用推理设置时更准确,只需要把问题复制粘贴再说一遍,就能把准确率从21.33%提升到97.33%!
简单到难以置信!近日,Google Research一项新研究发现:想让大模型在不启用推理设置时更准确,只需要把问题复制粘贴再说一遍,就能把准确率从21.33%提升到97.33%!
香港大学(The University of Hong Kong)与 Adobe Research 联合发布 Self-E(Self-Evaluating Model):一种无需预训练教师蒸馏、从零开始训练的任意步数文生图框架。其目标非常直接:让同一个模型在极少步数也能生成语义清晰、结构稳定的图像,同时在 50 步等常规设置下保持顶级质量,并且随着步数增加呈现单调提升。
MemGovern团队 投稿 量子位 | 公众号 QbitAI 人类程序员碰到棘手bug通常会上网查询前辈经验。 当前AI虽然开始具备联网搜索能力,但仍不能很好地从网络经验中获取修复bug的能力。 让
近期,来自墨尔本大学和华中科技大学的研究者们发布了一篇深度综述,从 MLSys 的思维出发,用一套新颖的「时间 - 空间 - 结构」系统行为视角对 KV cache 优化方法进行了系统性梳理与深入分析,并将相关资源整理成了持续维护的 Awesome 资源库,方便研究者与从业人员快速定位与落地。
大语言模型(LLMs)的爆发式增长引领了人工智能领域的范式转移,取得了巨大的工程成功。然而,一个关键的悖论依然存在:尽管 LLMs 在实践中表现卓越,但其理论研究仍处于起步阶段,导致这些系统在很大程度上被视为难以捉摸的「黑盒」。
胡宇航(网名 “U 航”),毕业于美国哥伦比亚大学,博士学位,首形科技创始人。长期专注于机器人自主学习的研究工作。研究成果发表于《Nature Machine Intelligence》,《Science Robotics》等国际顶级期刊。
机器学习部署在边端设备的时候,模型总是存储在云端服务器上(5G 基站),而模型输入输出总是在边端设备上(例如用照相机拍摄照片然后识别其中的目标)。在这种场景下,传统有以下两种方案完成机器学习的推理:
感谢AI!
如果人类的大脑像现在的LLM Agent一样工作,记住每一句今天明天的废话,我们在五岁时就会因为内存溢出而宕机。真正的智能,核心不在于“存储”,而在于高效的“遗忘”与“重组”。
作者来自 Nanyang Technological University(MMLab) 与 SenseTime Research,提出 Prism Hypothesis(棱镜假说) 与 Unified Autoencoding(UAE),尝试用 “频率谱” 的统一视角,把语义编码器与像素编码器的表示冲突真正 “合并解决”。