训具身模型遇到的很多问题,在数据采集时就已经注定了丨鹿明联席CTO丁琰分享
训具身模型遇到的很多问题,在数据采集时就已经注定了丨鹿明联席CTO丁琰分享“我们只交付100%可以复现的轨迹。”
“我们只交付100%可以复现的轨迹。”
针对端到端全模态大模型(OmniLLMs)在跨模态对齐和细粒度理解上的痛点,浙江大学、西湖大学、蚂蚁集团联合提出 OmniAgent。这是一种基于「音频引导」的主动感知 Agent,通过「思考 - 行动 - 观察 - 反思」闭环,实现了从被动响应到主动探询的范式转变。
最近一年,互联网上各种为RAG赛博哭坟的帖子不胜枚举。
随着 AIGC(Artificial Intelligence Generated Content) 的爆发,我们已经习惯了像 Sora 或 Wan 这样的视频生成模型能够理解「一只宇航员在火星后空翻」这样天马行空的指令。然而,3D 人体动作生成(3D MoGen)领域却稍显滞后。
尽管多模态大语言模型(MLLMs)在识别「图中有什么」这一语义层面上取得了巨大进步,但在理解「图像看起来怎么样」这一感知层面上仍显乏力。
在多模态大模型(MLLMs)领域,思维链(CoT)一直被视为提升推理能力的核心技术。然而,面对复杂的长程、视觉中心任务,这种基于文本生成的推理方式正面临瓶颈:文本难以精确追踪视觉信息的变化。形象地说,模型不知道自己想到哪一步了,对应图像是什么状态。
近日,清华大学团队从 AI 里找到了与幻觉产生高度关联的少数“脑细胞”,并给它们起了一个名字 H-神经元(幻觉神经元)。他们发现拨动这些小开关能显著调节 AI 的行为倾向——例如影响它是否会盲目听从错误指令、甚至是否会产生有害回答。
FaithLens 模型在忠实性幻觉检测任务上,达到了当前最优效果。
当大模型竞争转向后训练,继续为闲置显卡烧钱无异于「慢性自杀」。如今,按Token计费的Serverless模式,彻底终结了算力租赁的暴利时代,让算法工程师真正拥有了定义物理世界的权利。
过去一段时间,我们介绍了很多小白入门级的agent框架,也介绍了包括langchain在内的很多专业级agent搭建框架。