
OpenAI自曝“o4”训练中,用思维链监控抓住AI作弊瞬间
OpenAI自曝“o4”训练中,用思维链监控抓住AI作弊瞬间o1/o3这样的推理模型太强大,一有机会就会利用漏洞作弊,怎么办?
o1/o3这样的推理模型太强大,一有机会就会利用漏洞作弊,怎么办?
武汉大学等发布了一篇大型视觉语言模型(LVLMs)安全性的综述论文,提出了一个系统性的安全分类框架,涵盖攻击、防御和评估,并对最新模型DeepSeek Janus-Pro进行了安全性测试,发现其在安全性上存在明显短板。
本文介绍了一项突破性的AI推理技术创新——思维草图(SoT)框架。该框架从人类认知过程中获取灵感,通过一个200M大小的路由模型将LLM引导到概念链、分块符号化和专家词汇三种推理范式,巧妙地解决了大语言模型推理过程中的效率瓶颈。
在 ICLR 2025 中,来自南洋理工大学 S-Lab、上海 AI Lab、北京大学以及香港大学的研究者提出的基于 Flow Matching 技术的全新 3D 生成框架 GaussianAnything,针对现有问题引入了一种交互式的点云结构化潜空间,实现了可扩展的、高质量的 3D 生成,并支持几何-纹理解耦生成与可控编辑能力。
LLM 在生成 long CoT 方面展现出惊人的能力,例如 o1 已能生成长度高达 100K tokens 的序列。然而,这也给 KV cache 的存储带来了严峻挑战。
字节对MoE模型训练成本再砍一刀,成本可节省40%! 刚刚,豆包大模型团队在GitHub上开源了叫做COMET的MoE优化技术。
推理token减少80%-90%,准确率变化不大,某些任务还能增加。
最近, Meta首席AI科学家杨立昆接受海外播客This Is IT 的专访,探讨了深度学习的发展历程、机器学习的三种范式、莫拉维克悖论与AI发展的限制、训练AI模型的资源、AI基础设施投资等话题。
AGI明年降临?清华人大最新研究给狂热的AI世界泼了一盆冷水:人类距离真正的AGI,还有整整70年!若要实现「自主级智能,需要惊人的10²⁶参数,所需GPU总价竟是苹果市值的4×10⁷倍!
CMU团队用LCPO训练了一个15亿参数的L1模型,结果令人震惊:在数学推理任务中,它比S1相对提升100%以上,在逻辑推理和MMLU等非训练任务上也能稳定发挥。更厉害的是,要求短推理时,甚至击败了GPT-4o——用的还是相同的token预算!