
AI入侵KTV,赛博大粪包围生活
AI入侵KTV,赛博大粪包围生活AI在KTV中广泛应用生成荒谬MV(如猫狗军事训练或高速变幻画面),以规避版权成本,但用户遭遇精神冲击。类似低质AI内容蔓延广告领域,引发“脑腐纪元”,意指信息过载导致智力退化,暴露降本增效的文化代价。
AI在KTV中广泛应用生成荒谬MV(如猫狗军事训练或高速变幻画面),以规避版权成本,但用户遭遇精神冲击。类似低质AI内容蔓延广告领域,引发“脑腐纪元”,意指信息过载导致智力退化,暴露降本增效的文化代价。
当AI智能体(Agent)开发的浪潮涌来,很多一线工程师却发现自己站在一个尴尬的十字路口:左边是谷歌、OpenAI等巨头深不可测的“技术黑盒”,右边是看似开放却暗藏“付费墙”的开源社区。大家空有场景和想法,却缺少一把能打开未来的钥匙。
团队在自研知识库底座的过程中,想对比参考下RAGFlow,发现其切片方法缺乏详细说明和清晰案例,如果你也遇到以下问题,本文能帮你节省大量试错时间
年初那会儿,DeepSeek 横空出世,AI 圈子跟过年一样热闹。它凭啥这么火?除了开源够意思,五百多万的训练成本也惊艳了不少人。
科研er看过来!还在反复尝试材料组合方案,耗时又耗力? 新型“神经-符号”融合规划器直接帮你一键锁定高效又精准的科研智能规划。
当前先进制造领域的产线良率往往超过 98%,因此异常样本(也称为缺陷样本)的搜集和标注已成为⼯业质检的核⼼瓶颈,过少的异常样本显著限制了模型的检测能⼒,利⽤⽣成模型扩充异常样本集合正逐渐成为产业界的主流选择,但现有⽅法存在明显局限
深度研究智能体(Deep Research Agents)凭借大语言模型(LLM)和视觉-语言模型(VLM)的强大能力,正在重塑知识发现与问题解决的范式。
近年来,大语言模型(LLM)在语言理解、生成和泛化方面取得了突破性进展,并广泛应用于各种文本任务。随着研究的深入,人们开始关注将 LLM 的能力扩展至非文本模态,例如图像、音频、视频、图结构、推荐系统等。
声音理解能力新SOTA,小米全量开源了模型。 MiDashengLM-7B,基于Xiaomi Dasheng作为音频编码器和Qwen2.5-Omni-7B Thinker作为自回归解码器,通过创新的通用音频描述训练策略,实现了对语音、环境声音和音乐的统一理解。
在数据隐私日益重要的 AI 时代,如何在保护用户数据的同时高效运行机器学习模型,成为了学术界和工业界共同关注的难题。