斯坦福7B智能体全面超越GPT-4o,推理流登顶HF
斯坦福7B智能体全面超越GPT-4o,推理流登顶HF传统智能体系统难以兼顾稳定性和学习能力,斯坦福等学者提出AgentFlow框架,通过模块化和实时强化学习,在推理中持续优化策略,并使小规模模型在多项任务中超越GPT-4o,为AI发展开辟新思路。
传统智能体系统难以兼顾稳定性和学习能力,斯坦福等学者提出AgentFlow框架,通过模块化和实时强化学习,在推理中持续优化策略,并使小规模模型在多项任务中超越GPT-4o,为AI发展开辟新思路。
在短视频推荐、跨模态搜索等工业场景中,传统多模态模型常受限于模态支持单一、训练不稳定、领域适配性差等问题。
独立研究者 Jianli Zhao 等人近日的一项新研究发现,通过在有害请求前填充一长串无害的解谜推理序列(harmless puzzle reasoning),就能成功对推理模型实现越狱攻击。他们将这种方法命名为思维链劫持(Chain-of-Thought Hijacking)。
在人工智能领域,推理语言模型(RLM)虽然在数学与编程任务中已展现出色性能,但在像医学这样高度依赖专业知识的场景中,一个亟待回答的问题是:复杂的多步推理会帮助模型提升医学问答能力吗?要回答这个问题,需要构建足够高质量的医学推理数据,当前医学推理数据的构建存在以下挑战:
多模态大模型(MLLM)在自然图像上已取得显著进展,但当问题落在图表、几何草图、科研绘图等结构化图像上时,细小的感知误差会迅速放大为推理偏差。
随着 AI 技术的发展,大语言模型已经越来越多地应用于人们的日常生活中。需要了解的是,现阶段大语言模型面临版权保护的实际需求:
OpenAI Atlas、Perplexity Comet等AI浏览器的推出,虽提升了网页自动化效率,却也使智能爬虫威胁加剧。南洋理工大学团队研发的WebCloak,创新性地混淆网页结构与语义,打破爬虫技术依赖,为数据安全筑起轻量高效防线,助力抵御新型智能攻击,守护网络安全。
「在大模型热潮中,如何真正评测它们的智能?」
好消息:AI 越来越好用了。 坏消息:越用它越笨。
在大数据和大模型推动下,微调技术凭借成本低、效率高优势,成为应对小样本、长尾目标等复杂场景的利器。从早期全参数微调到参数高效微调(PEFT),再到如今融合多种PEFT技术的混合微调,遥感微调技术不断进化。清华大学等团队在CVMJ期刊上系统梳理了技术脉络,并指出了九个潜在研究方向,助力遥感技术在农业监测、天气预报等关键领域发挥更大作用。