
MetaMind元认知多智能体,让LLM理解对话背后的深层意图,首次达到人类水平 | 最新
MetaMind元认知多智能体,让LLM理解对话背后的深层意图,首次达到人类水平 | 最新MetaMind是一个多智能体框架,专门解决大语言模型在社交认知方面的根本缺陷。传统的 LLM 常常难以应对现实世界中人际沟通中固有的模糊性和间接性,无法理解未说出口的意图、隐含的情绪或文化敏感线索。MetaMind首次使LLMs在关键心理理论(ToM)任务上达到人类水平表现。
MetaMind是一个多智能体框架,专门解决大语言模型在社交认知方面的根本缺陷。传统的 LLM 常常难以应对现实世界中人际沟通中固有的模糊性和间接性,无法理解未说出口的意图、隐含的情绪或文化敏感线索。MetaMind首次使LLMs在关键心理理论(ToM)任务上达到人类水平表现。
来自华盛顿大学、AI2、UC伯克利研究团队证实,「伪奖励」(Spurious Rewards)也能带来LLM推理能力提升的惊喜。
又是一个让程序员狂欢的研究!来自 OpenHands、耶鲁、南加大和斯坦福的研究团队刚刚发布了 LocAgent—— 一个专门用于代码定位的图索引 LLM Agent 框架,直接把代码定位准确率拉到了 92.7% 的新高度。该研究已被 ACL 2025 录用。
第一财经「新皮层」独家获得消息称,小红书已将内部大模型技术与应用产品团队升级为「hi lab」(人文智能实验室,Humane Intelligence Lab)。同时,小红书今年年初开始组建「AI人文训练师」团队,邀请有深厚人文背景的研究者与AI领域的算法工程师、科学家共同完成对AI的后训练,以训练AI具有更好的人文素养以及表现上的一致性。而这个「AI人文训练师」团队也隶属于「hi lab」。
今天,我们正式发布 DeepSeek-R1,并同步开源模型权重。DeepSeek-R1 遵循 MIT License,允许用户通过蒸馏技术借助 R1 训练其他模型。DeepSeek-R1 上线API,对用户开放思维链输出,通过设置 `model='deepseek-reasoner'` 即可调用。
过度依赖CoT思维链推理会降低模型性能,有新解了! 来自字节、复旦大学的研究人员提出自适应推理框架CAR,能根据模型困惑度动态选择短回答或详细的长文本推理,最终实现了准确性与效率的最佳平衡。
LLM发展到今天,下一步该往哪个方向探索?
大模型做数独,总体正确率只有15%???
1+1等于几?
在日益强调“思维能力”的大语言模型时代,如何让模型在“难”的问题上展开推理,而不是无差别地“想个不停”,成为当前智能推理研究的重要课题。