腾讯AI Lab首创RL框架Parallel-R1,教大模型学会「并行思维」
腾讯AI Lab首创RL框架Parallel-R1,教大模型学会「并行思维」自从 Google Gemini 将数学奥赛的成功部分归功于「并行思维」后,如何让大模型掌握这种并行探索多种推理路径的能力,成为了学界关注的焦点。
自从 Google Gemini 将数学奥赛的成功部分归功于「并行思维」后,如何让大模型掌握这种并行探索多种推理路径的能力,成为了学界关注的焦点。
很多人相信,我们已经进入了所谓的「AI 下半场」,一个模型能力足够强大、应用理应爆发的时代。然而,对于这个时代真正缺少的东西,不同的人有不同的侧重,比如(前)OpenAI 研究者姚顺雨强调了评估的重要性,著名数学家陶哲轩则指出必须降低成本才能实现规模化应用。
近年来,大语言模型(LLMs)在复杂推理任务上的能力突飞猛进,这在很大程度上得益于深度思考的策略,即通过增加测试时(test-time)的计算量,让模型生成更长的思维链(Chain-of-Thought)。
上下文学习”(In-Context Learning,ICL),是大模型不需要微调(fine-tuning),仅通过分析在提示词中给出的几个范例,就能解决当前任务的能力。您可能已经对这个场景再熟悉不过了:您在提示词里扔进去几个例子,然后,哇!大模型似乎瞬间就学会了一项新技能,表现得像个天才。
来自MIT Improbable AI Lab的研究者们最近发表了一篇题为《RL's Razor: Why Online Reinforcement Learning Forgets Less》的论文,系统性地回答了这个问题,他们不仅通过大量实验证实了这一现象,更进一步提出了一个简洁而深刻的解释,并将其命名为 “RL's Razor”(RL的剃刀)。
DeepSeek荣登Nature封面,实至名归!今年1月,梁文锋带队R1新作,开创了AI推理新范式——纯粹RL就能激发LLM无限推理能力。Nature还特发一篇评论文章,对其大加赞赏。
9月17日消息,AI领域的两大巨头Anthropic和OpenAI正致力于开发能够替代人类执行复杂工作的“AI同事”。其核心方法是使用模拟企业软件来训练AI模型,使其能像人类员工那样理解和操作真实的工作流程。
近年来,以人形机器人、自动驾驶为代表的具身人工智能(Embodied Artificial Intelligence, EAI)正以前所未有的速度发展,从数字世界大步迈向物理现实。然而,当一次错误的风险不再是屏幕上的一行乱码,而是可能导致真实世界中的物理伤害时,一个紧迫的问题摆在了我们面前: 如何确保这些日益强大的具身智能体是安全且值得信赖的?
谷歌DeepMind研究团队一年前的研究成果直到昨晚才姗姗揭秘,提出了一种叫做GDR的新方法,颠覆了传统训练中设法剔除脏数据的思路,将饱含恶意内容的数据「变废为宝」,处理后的数据集用于训练,甚至比直接剔除脏数据训练出的模型效果还好,「出淤泥而不染」,「择善而从」。
近日,全球网络通信顶会 ACM SIGCOMM 2025 在葡萄牙落幕,共 3 篇论文获奖,华为网络技术实验室与香港科技大学 iSING Lab 合作的 DCP 研究成果,获本届大会 Best Student Paper Award (Honorable Mention),成为亚洲地域唯一获奖的论文。