想知道你的LLM API被过度收费了吗?隐藏的Tokens终于可以被审计了
想知道你的LLM API被过度收费了吗?隐藏的Tokens终于可以被审计了近年来,大型语言模型(LLM)在处理复杂任务方面取得了显著进展,尤其体现在多步推理、工具调用以及多智能体协作等高级应用中。这些能力的提升,往往依赖于模型内部一系列复杂的「思考」过程或 Agentic System 中的 Agent 间频繁信息交互。
近年来,大型语言模型(LLM)在处理复杂任务方面取得了显著进展,尤其体现在多步推理、工具调用以及多智能体协作等高级应用中。这些能力的提升,往往依赖于模型内部一系列复杂的「思考」过程或 Agentic System 中的 Agent 间频繁信息交互。
近期,人工智能领域对“具身智能”的讨论持续升温——如何让AI不仅能“理解”语言,还能用“手”去感知世界、操作环境、完成任务?相比语言模型的迅猛发展,真正通向Agent的下一步,需要AI具备跨模态感知、动作控制与现实泛化能力。具身智能让AI不仅能“思考”,更能“感知”“行动”。
LLM Ensemble(大语言模型集成)在近年来快速地获得了广泛关注。它指的是在下游任务推理阶段,综合考虑并利用多个大语言模型(每个模型都旨在处理用户查询),从而发挥它们各自的优势。大语言模型的广泛可得性,以及其开箱即用的特性和各个模型所具备的不同优势,极大地推动了 LLM Ensemble 领域的发展。
由香港中文大学团队撰写的语音语言模型综述论文《Recent Advances in Speech Language Models: A Survey》已成功被 ACL 2025 主会议接收!这是该领域首个全面系统的综述,为语音 AI 的未来发展指明了方向。
思维链(Chain of Thought, CoT)推理方法已被证明能够显著提升大语言模型(LLMs)在复杂任务中的表现。而在多模态大语言模型(MLLMs)中,CoT 同样展现出了巨大潜力。
近年来,链式推理和强化学习已经被广泛应用于大语言模型,让大语言模型的推理能力得到了显著提升。
当前,Agentic RAG(Retrieval-Augmented Generation)正逐步成为大型语言模型访问外部知识的关键路径。但在真实实践中,搜索智能体的强化学习训练并未展现出预期的稳定优势。一方面,部分方法优化的目标与真实下游需求存在偏离,另一方面,搜索器与生成器间的耦合也影响了泛化与部署效率。
在金融科技智能化转型进程中,大语言模型以及多模态大模型(LVLM)正成为核心技术驱动力。尽管 LVLM 展现出卓越的跨模态认知能力
本文深入剖析 MiniCPM4 采用的稀疏注意力结构 InfLLM v2。作为新一代基于 Transformer 架构的语言模型,MiniCPM4 在处理长序列时展现出令人瞩目的效率提升。传统Transformer的稠密注意力机制在面对长上下文时面临着计算开销迅速上升的趋势,这在实际应用中造成了难以逾越的性能瓶颈。
研究人员发现,大语言模型的遗忘并非简单的信息删除,而是可能隐藏在模型内部。通过构建表示空间分析工具,区分了可逆遗忘和不可逆遗忘,揭示了真正遗忘的本质是结构性的抹除,而非行为的抑制。