告别「单线程」思维:通研院提出NPR框架,让智能体进化出原生的并行推理大脑
告别「单线程」思维:通研院提出NPR框架,让智能体进化出原生的并行推理大脑近年来,大语言模型在「写得长、写得顺」这件事上进步飞快。但当任务升级到真正复杂的推理场景 —— 需要兵分多路探索、需要自我反思与相互印证、需要在多条线索之间做汇总与取舍时,传统的链式思维(Chain-of-Thought)往往就开始「吃力」:容易被早期判断带偏、发散不足、自我纠错弱,而且顺序生成的效率天然受限。
近年来,大语言模型在「写得长、写得顺」这件事上进步飞快。但当任务升级到真正复杂的推理场景 —— 需要兵分多路探索、需要自我反思与相互印证、需要在多条线索之间做汇总与取舍时,传统的链式思维(Chain-of-Thought)往往就开始「吃力」:容易被早期判断带偏、发散不足、自我纠错弱,而且顺序生成的效率天然受限。
近年来,多模态大语言模型正在经历一场快速的范式转变,新兴研究聚焦于构建能够联合处理和生成跨语言、视觉、音频以及其他潜在感官模态信息的统一全模态大模型。此类模型的目标不仅是感知全模态内容,还要将视觉理解和生成整合到统一架构中,从而实现模态间的协同交互。
近年来,大语言模型的能力突飞猛进,但随之而来的却是愈发棘手的双重用途风险(dual-use risks)。当模型在海量公开互联网数据中学习时,它不仅掌握语言与推理能力,也不可避免地接触到 CBRN(化学、生物、放射、核)危险制造、软件漏洞利用等高敏感度、潜在危险的知识领域。
多模态大语言模型(MLLMs)已成为AI视觉理解的核心引擎,但其在真实世界视觉退化(模糊、噪声、遮挡等)下的性能崩溃,始终是制约产业落地的致命瓶颈。
强化学习(RL)在大语言模型和 2D 图像生成中大获成功后,首次被系统性拓展到文本到 3D 生成领域!面对 3D 物体更高的空间复杂性、全局几何一致性和局部纹理精细化的双重挑战,研究者们首次系统研究了 RL 在 3D 自回归生成中的应用!
在大语言模型和文生图领域,强化学习(RL)已成为提升模型思维链与生成质量的关键方法。
近日,来自 Meta、香港科技大学、索邦大学、纽约大学的一个联合团队基于 JEPA 打造了一个视觉-语言模型:VL-JEPA。据作者 Pascale Fung 介绍,VL-JEPA 是第一个基于联合嵌入预测架构,能够实时执行通用领域视觉-语言任务的非生成模型。
独家获悉,腾讯近期完成了一次组织调整,正式新成立AI Infra部、AI Data部、数据计算平台部。 12月17日下午发布的内部公告中,腾讯表示,Vinces Yao将出任“CEO/总裁办公室”首席AI科学家,向腾讯总裁刘炽平汇报;他同时兼任AI Infra部、大语言模型部负责人,向技术工程事业群总裁卢山汇报。
近期,强化学习(RL)技术在提升语言模型的推理能力方面取得了显著成效。
近年来,视频大语言模型在理解动态视觉信息方面展现出强大能力,成为处理真实世界多模态数据的重要基础模型。然而,它们在真实性、安全性、公平性、鲁棒性和隐私保护等方面仍面临严峻挑战。