1972年12月,在美国华盛顿特区举行的美国科学促进会年会上,麻省理工学院气象学教授埃德·洛伦兹发表了题为「巴西一只蝴蝶的煽动是否会在德克萨斯引发龙卷风?」的演讲,这贡献了「蝴蝶效应」这一术语。
1972年12月,在美国华盛顿特区举行的美国科学促进会年会上,麻省理工学院气象学教授埃德·洛伦兹发表了题为「巴西一只蝴蝶的煽动是否会在德克萨斯引发龙卷风?」的演讲,这贡献了「蝴蝶效应」这一术语。
虽然大型语言模型(LLM)在各种常见的自然语言处理任务中展现出了优异的性能,但随之而来的幻觉,也揭示了模型在真实性和透明度上仍然存在问题。
2022年末,ChatGPT惊艳了世人,留下了急火攻心的“AI先行者”Google。
硅谷的人才争夺战愈演愈烈。
2024 年谷歌研究学者计划(Research Scholar Program)获奖名单公布了。获奖者最高将获得 6 万美元奖金,用于支持研究工作。
上周扎克伯格把Meta AI 聊天机器人向公众开放了
Transformer 的重要性无需多言,目前也有很多研究团队致力于改进这种变革性技术,其中一个重要的改进方向是提升 Transformer 的效率,比如让其具备自适应计算能力,从而可以节省下不必要的计算。
通过这项技术,能使transformer大模型在有限的计算资源 条件下,处理无限长度的输入。
2016 年,Google CEO 桑达尔·皮查伊在 I/O 开发者大会上豪情满怀地向全世界宣布: Google 已经成为了搜索的代名词,Alphabet 未来将成为一家 AI 优先的公司。
为解决大模型(LLMs)在处理超长输入序列时遇到的内存限制问题,本文作者提出了一种新型架构:Infini-Transformer,它可以在有限内存条件下,让基于Transformer的大语言模型(LLMs)高效处理无限长的输入序列。实验结果表明:Infini-Transformer在长上下文语言建模任务上超越了基线模型,内存最高可节约114倍。