田渊栋等人新作:突破内存瓶颈,让一块4090预训练7B大模型
田渊栋等人新作:突破内存瓶颈,让一块4090预训练7B大模型3 月 6 日,田渊栋又一项研究出炉,这次,他们主攻 LLM 内存效率。除了田渊栋本人,还有来自加州理工学院、德克萨斯大学奥斯汀分校以及 CMU 的研究者。
3 月 6 日,田渊栋又一项研究出炉,这次,他们主攻 LLM 内存效率。除了田渊栋本人,还有来自加州理工学院、德克萨斯大学奥斯汀分校以及 CMU 的研究者。
2023 年,大型语言模型(LLM)以其强大的生成、理解、推理等能力而持续受到高度关注。然而,训练和部署 LLM 非常昂贵,需要大量的计算资源和内存,因此研究人员开发了许多用于加速 LLM 预训练、微调和推理的方法。
如果语言模型是巫师,代码预训练就是魔杖!
想要AI生成更长的视频?现在,有人提出了一个效果很不错的免调优方法,直接就能作用于预训练好的视频扩散模型。
当前智能对话模型的发展中,强大的底层模型起着至关重要的作用。这些先进模型的预训练往往依赖于高质量且多样化的语料库,而如何构建这样的语料库,已成为行业中的一大挑战。
本文探讨了大模型套壳的问题,解释了大模型的内核和预训练过程。同时,介绍了“原创派”和“模仿派”两种预训练框架的差异,并讨论了通过“偷”聊天模型数据进行微调的现象。最后,提出了把“壳”做厚才是竞争力的观点。
作者重点关注了基于 Transformer 的 LLM 模型体系结构在从预训练到推理的所有阶段中优化长上下文能力的进展。
今天分享一篇符尧大佬的一篇数据工程(Data Engineering)的文章,解释了speed of grokking指标是什么,分析了数据工程
化学反应是药物设计和有机化学研究的基础。研究界越来越需要一种能够有效捕获化学反应基本规则的大规模深度学习框架。