摘要
本发明公开了一种风电场设备故障智能诊断方法及系统,采集风电场设备的多维度传感器数据;利用边缘分析算法对这些数据进行初步筛选,确定需要进一步诊断的数据;将筛选出的数据输入预先构建的故障诊断模型中,预先构建的故障诊断模型内部,数据先经过多模态深度学习模型融合,再利用迁移学习与域适应和多智能体强化学习框架确定故障发生的区域;同时,因果推理引擎和知识图谱增强的神经符号推理模块负责深入处理并诊断故障。最后,将确定的故障区域和诊断结果输入动态系统健康指数计算模块,生成最终的故障诊断结果。该方法显著提高了风电场设备故障的诊断效率和准确性,为风电场的稳定运行提供了有力保障。