浙大00后硕士破局AI记忆难题!新技术让长对话响应速度快十余倍
浙大00后硕士破局AI记忆难题!新技术让长对话响应速度快十余倍走上了堪称是“最佳 AI 转型路径”之后,他也在读研期间和合作者针对 AI 记忆开展了一项研究,借此发明出一种名为 LightMem(轻量记忆)的技术。在 LongMemEval 和 LoCoMo 这两个专门用于考察 AI 长期记忆能力的基准测试上,LightMem 回答问题的准确率全面超越之前的冠军模型,最高提升了 7% 以上,在某些数据集上甚至提升了将近 30%。
走上了堪称是“最佳 AI 转型路径”之后,他也在读研期间和合作者针对 AI 记忆开展了一项研究,借此发明出一种名为 LightMem(轻量记忆)的技术。在 LongMemEval 和 LoCoMo 这两个专门用于考察 AI 长期记忆能力的基准测试上,LightMem 回答问题的准确率全面超越之前的冠军模型,最高提升了 7% 以上,在某些数据集上甚至提升了将近 30%。
在AI浪潮中,博士学位正成为创业者的新宠,取代了传统的MBA文凭。昔日辍学神话渐成例外,如今的技术精英们凭借科研深度,引领小型高效团队迅速崛起。
两项关于大模型新架构的研究一口气在NeurIPS 2025上发布,通过“测试时训练”机制,能在推理阶段将上下文窗口扩展至200万token。两项新成果分别是:Titans:兼具RNN速度和Transformer性能的全新架构;MIRAS:Titans背后的核心理论框架。
一直以来,传统 MAS 依赖自然语言沟通,各个 LLM 之间用文本交流思路。这种方法虽然可解释,但冗长、低效、信息易丢失。LatentMAS 则让智能体直接交换内部的隐藏层表示与 KV-cache 工作记忆,做到了:
在 Text-to-Video / Image-to-Video 技术突飞猛进的今天,我们已经习惯了这样一个常识: 视频生成的第一帧(First Frame)只是时间轴的起点,是后续动画的起始画面。
作者在包含 50 多个任务的多个仿真和真实世界场景中评估了 SpatialActor。它在 RLBench 上取得了 87.4% 的成绩,达到 SOTA 水平;在不同噪声条件下,性能提升了 13.9% 至 19.4%,展现出强大的鲁棒性。目前该论文已被收录为 AAAI 2026 Oral,并将于近期开源。
DeepWisdom研究团队提出:视频生成模型不仅能画画,更能推理。 为了验证这一观点,团队推出了VR-Bench——这是首个通过迷宫任务评估视频模型空间推理(spatial reasoning)能力的基准测试
这篇学术论长文由北京航空航天大学复杂关键软件环境全国重点实验室领衔。《From Code Foundation Models to Agents and Applications》一文是对过去几年代码智能领域的一次系统梳理:模型、任务、训练、智能体、安全与应用都被串联成了一条完整、连贯的技术链路。
2025 年 12 月,硅谷风险投资机构 Andreessen Horowitz(简称 a16z)与 AI 推理服务平台 OpenRouter 联合发布了一份名为《State of AI》的研究报告。这份报告基于 OpenRouter 平台上超过 100 万亿 token 的真实用户交互数据,试图呈现过去一年间大语言模型在实际应用中的真实状态。
Anthropic发布了Programmatic Tool Calling(PTC)特性,让Claude通过代码编排工具执行,降低token消耗、减少延迟并提升准确性。
全球首个可大规模落地的开源原生多模态架构(Native VLM),名曰NEO。要知道,此前主流的多模态大模型,例如我们熟悉的GPT-4V、Claude 3.5等,它们的底层逻辑本质上其实玩的就是拼接。
大模型总是无法理解空间,就像我们难以想象四维世界。
DeepSeek 一发布模型,总会引起业内的高度关注与广泛讨论,但也不可避免的暴露出一些小 Bug。
Vision–Language–Action(VLA)策略正逐渐成为机器人迈向通用操作智能的重要技术路径:这类策略能够在统一模型内同时处理视觉感知、语言指令并生成连续控制信号。
这篇论文由北京航空航天大学、阿里巴巴、字节跳动、上海人工智能实验室等几十家顶尖机构联合撰写,全文长达303页,是对当前“代码大模型(Code LLMs)”领域最详尽的百科全书式指南。
本文为Milvus Week系列第三篇,该系列旨在分享Milvus的创新与实践成果,以下是DAY3内容划重点: Milvus2.6中,Zilliz借助Geolocation Index for Milvus,首次将地理空间数据与向量检索融合,使 AI 可以在理解语义的同时,理解空间。
最近研究发现,大模型在判断逻辑谬误时容易「想太多」,误报正常句子,但在确定有谬误后,其分类能力较强。研究人员构建了首个高质量英文逻辑谬误基准SMARTYPAT-BENCH,并开发了基于Prolog的逻辑谬误自动生成框架SMARTYPAT,为大模型逻辑能力评估提供新思路,可用于谬误识别、辩论教育等领域。
昨日,有位推特博主晒出了国内几大开源模型在轻量级软件工程 Agent 基准测试 mini-SWE-agent 上的成绩。该基准主要测试大模型在真实软件开发任务中的多步推理、环境交互和工程化能力。
在AIGC的浪潮中,3D生成模型(如TRELLIS)正以惊人的速度进化,生成的模型越来越精细。然而,“慢”与计算量大依然是制约其大规模应用的最大痛点。复杂的去噪过程、庞大的计算量,让生成一个高质量3D资产往往需要漫长的等待。
想象你在准备早餐:你不会先写一份详细到「左手抓鸡蛋、右手拿碗、手腕旋转 45 度敲击蛋壳」这样的清单,也不会只有一个笼统的计划叫「做个早餐」,然后不知所措。
DeepSeek V3.2的Agentic能力大增,离不开这项关键机制:Interleaved Thinking(交错思维链)。Interleaved Thinking风靡开源社区背后,离不开另一家中国公司的推动。
就在前天,DeepSeek 一口气上新了两个新模型,DeepSeek-V3.2 和 DeepSeek-V3.2-Speciale。
2027年将是人类命运的关键节点!Anthropic首席科学家Jared Kaplan预警,人类将在2027至2030年面临是否允许AI进行递归自我进化的终极抉择。Anthropic最新发布(12月3日)的内部深度调查《AI如何改变工作》,正在揭示这场宏大叙事下微观个体的命运——工程师的「空心化」和学徒制的崩溃。
OpenAI搞了个新活:让ChatGPT自己“坦白从宽”。
继今年5月提出MeanFlow (MF) 之后,何恺明团队于近日推出了最新的改进版本—— Improved MeanFlow (iMF),iMF成功解决了原始MF在训练稳定性、指导灵活性和架构效率上的三大核心问题。
在人工通用智能(AGI)的探索征程中,具身智能 Agents 作为连接数字认知与物理世界的关键载体,其核心价值在于能够在真实物理环境中实现稳健的空间感知、高效的任务规划与自适应的执行闭环。
最近口述采样很火。如果您经常使用经过“对齐”训练(如RLHF)的LLM,您可能已经注意到一个现象:模型虽然变得听话、安全了,但也变得巨“无聊”。
当你阅读《红楼梦》《哈利·波特》《百年孤独》等长篇小说时,读着读着可能就忘记前面讲了什么,有时还会搞混人物关系。AI 在阅读长文章的时候也存在类似问题,当文章太长时它也会卡主,要么读得特别慢,要么记不住前面的内容。
叶问蹲、跳舞、跑步,一个策略全搞定!
如今 LLM 的语言理解与生成能力已展现出惊人的广泛适用性,但随着 LLM 的发展,一个事实越发凸显:仅靠语言,仍不足以支撑真正的智能。