
Hinton神预言!斯坦福惊人实锤:00后20%初级IT岗蒸发,AI失业潮来了
Hinton神预言!斯坦福惊人实锤:00后20%初级IT岗蒸发,AI失业潮来了AI正在无声改变美国就业市场,而最先倒下的,竟是年轻人!斯坦福大学最新研究发现:22—25岁新人,正遭遇前所未有的就业危机:毕业即失业,正在成为现实。AI「精准打击」这届美国人年轻人,年轻人还有出路吗?
AI正在无声改变美国就业市场,而最先倒下的,竟是年轻人!斯坦福大学最新研究发现:22—25岁新人,正遭遇前所未有的就业危机:毕业即失业,正在成为现实。AI「精准打击」这届美国人年轻人,年轻人还有出路吗?
我们也看过各种 AI Coding 领域的评测,发现大多停留在了 「代码生成」与「封闭题目」的考核,却忽视了环境配置、依赖处理、跨仓库资源利用等开发者必经的真实需求 —— 当下众多 Benchmark 仅通过题目,已难以衡量 Code Agent 的实际效果。
在《流浪地球 2》中图恒宇将 AI 永生数字生命变为可能,旨为将人类意识进行数字化备份并进行意识上传,以实现人类文明的完全数字化。
2025 年 8 月 29 日,由清华大学计算机系崔鹏教授团队联合稳准智能共同研发的结构化数据通用大模型「极数」(LimiX)正式宣布开源。
近日,上海交大和上海人工智能实验室的研究发现,AI 的风险正从个体失控转向群体性的恶意共谋(Collusion)——即多个智能体秘密协同以达成有害目标。Agent 不仅可以像人类团队一样协作,甚至在某些情况下,还会展现出比人类更高效、更隐蔽的「团伙作案」能力。
说个热知识,现在的大模型,也可以轻松被投广告了。 我们之前也确实发现过这类现象,当时是在研究一家做 GEO(生成式引擎优化)的公司。通过在网上堆出大量正面内容,把某个特定品牌、网站、课程甚至微商产品,默默地塞进了大模型推荐结果里。
在大模型时代,机器学习资产(如模型、数据和许可证)数量激增,但大多缺乏规范管理,严重阻碍了AI应用效率。研究人员将在VLDB 2025系统介绍如何整理、发现和利用这些资产,使其更易查找、复用且符合规范,从而提升开发效率与协作质量。
和AI聊了两年多,人类说话ChatGPT味越来越重了? 最新研究结果显示,还真是。
本文介绍了来自北京大学王选计算机研究所王勇涛团队及合作者的最新研究成果 AutoOcc。针对开放自动驾驶场景,该篇工作提出了一个高效、高质量的 Open-ended 三维语义占据栅格真值标注框架,无需任何人类标注即可超越现有语义占据栅格自动化标注和预测管线,并展现优秀的通用性和泛化能力,论文已被 ICCV 2025 录用为 Highlight。
杜克大学与 Zoom 的研究者们推出了 LiveMCP-101,这是首个专门针对真实动态环境设计的 MCP-enabled Agent 评测基准。该基准包含 101 个精心设计的任务,涵盖旅行规划,体育娱乐,软件工程等多种不同场景,要求 Agent 在多步骤、多工具协同的场景下完成任务。
今天,AI 行业发展更进一步,将“光”引入 AIGC 领域,完全基于系统硬件物理定律,首次实现了具备特定特征的全新(未见过的)图像生成。来自加州大学洛杉矶分校的研究团队成功实现了手写数字、时尚产品、蝴蝶、人脸及艺术品(如梵高风格)的单色与多色图像光学生成,且整体性能媲美基于数字神经网络的生成式模型。
美国当地时间周二,由三位斯坦福经济学家联合发布、尚未经过同行评议的最新研究显示:自2022年11月ChatGPT上线以来,生成式AI已在“可高度自动化”的岗位上显著压低年轻美国人的就业率。
a16z最新发布「全球Top100消费级GenAI应用榜单」,AI竞争格局逐渐稳定,中国力量全面崛起,DeepSeek、豆包、夸克等多款产品跻身前十。ChatGPT依旧领跑,谷歌Gemini紧随其后,Grok高速逆袭。整体来看,全球AI正进入多极化竞争的新阶段。
传统 video dubbing 技术长期受限于其固有的 “口型僵局”,即仅能编辑嘴部区域,导致配音所传递的情感与人物的面部、肢体表达严重脱节,削弱了观众的沉浸感。现有新兴的音频驱动视频生成模型,在应对长视频序列时也暴露出身份漂移和片段过渡生硬等问题。
近期,多模态大模型在图像问答与视觉理解等任务中进展迅速。随着 Vision-R1 、MM-Eureka 等工作将强化学习引入多模态推理,数学推理也得到了一定提升。
谷歌DeepMind最新Nature王炸,直接把Gemini版大模型PH-LLM调教成了「AI健康私教」,把可穿戴冷冰冰的数据,直接变成睡眠健身建议,结果准确率暴打人类医生。
AI加速走向落地,企业「超级大脑」却在关键时刻断片?行业亟需一套能够持续进化、越用越聪明的系统框架,实现多智能体协同作战,通过自优化、自反馈瞬间激活知识库。清华系黑马已将其塞进AI原生引擎,率先在能源、军工等硬核场景中规模化落地,为产业智能升级提供了可靠路径。
尽管 LLM 的能力与日俱增,但其在复杂任务上的表现仍受限于静态的内部知识。为从根本上解决这一限制,突破 AI 能力界限,业界研究者们提出了 Agentic Deep Research 系统,在该系统中基于 LLM 的 Agent 通过自主推理、调用搜索引擎和迭代地整合信息来给出全面、有深度且正确性有保障的解决方案。
刚刚,面壁智能再放大招——MiniCPM-V 4.5多模态端侧模型横空出世:8B参数,越级反超72B巨无霸,图片、视频、OCR同级全线SOTA!不仅跑得快、看得清,还能真正落地到车机、机器人等。这一次,它不只是升级,而是刷新了端侧AI的高度。
Sakana AI以自然演化为灵感,提出了一种全新的模型融合进化方法M2N2。通过引入自然界的「择偶机制」,AI可以像生物一样「竞争、择偶、繁衍」。在当前全球算力短缺、模型训练实际规模受制的情况下,Sakana AI借助自然界的启示,为模型融合探索出了一条新路。
在正在举办的半导体行业会议 Hot Chips 2025 上,TogetherAI 首席科学家 Tri Dao 公布了 FlashAttention-4。
Transformer 架构对计算和内存的巨大需求使得大模型效率的提升成为一大难题。为应对这一挑战,研究者们投入了大量精力来设计更高效的 LM 架构。
大语言模型正加速重塑软件工程领域的各个环节,从需求分析到代码生成,再到自动化测试,几乎无所不能,但衡量这些模型到底「好不好用」、「好在哪里」、「还有哪些短板」,一直缺乏系统、权威的评估工具。
最近来自微软的研究者们带来了一个全新的思路,他们开源发布了POML(Prompt Orchestration Markup Language),它的的解决方案它的核心思想非常直接:为什么我们不能像开发网页一样,用工程化的思维来构建和管理我们的Prompt呢?这个编排语言很类似IBM的PDL
人形机器人的运动控制,正成为强化学习(RL)算法应用的下一个热点研究领域。当前,主流方案大多遵循 “仿真到现实”(Sim-to-Real)的范式。研究者们通过域随机化(Domain Randomization)技术,在成千上万个具有不同物理参数的仿真环境中训练通用控制模型,期望它能凭借强大的泛化能力,直接适应动力学特性未知的真实世界。
Jet-Nemotron是英伟达最新推出的小模型系列(2B/4B),由全华人团队打造。其核心创新在于提出后神经架构搜索(PostNAS)与新型线性注意力模块JetBlock,实现了从预训练Transformer出发的高效架构优化。
如果我们的教科书里包含大量的污言秽语,那么我们能学好语言吗?这种荒唐的问题却出现在最先进 ChatGPT 系列模型的学习过程中。
近年来,大语言模型(LLMs)展现出强大的语言理解与生成能力,推动了文本生成、代码生成、问答、翻译等任务的突破。代表性模型如 GPT、Claude、Gemini、DeepSeek、Qwen 等,已经深刻改变了人机交互方式。
浙江大学与哈工大(深圳)联合推出SafeMVDrive,利用扩散模型结合VLM实现批量化多视角真实域的安全关键视频生成。该方法在保持画质与真实感的同时,显著增强了驾驶场景的危险性。生成的场景用于端到端自动驾驶系统的极限压测,可使得模型的碰撞率提升50倍。
近年来,以GPT-4o、Gemini 2.5 Pro为代表的多模态大模型,在各大基准测试(如MMMU)中捷报频传,纷纷刷榜成功。