GLM-4.7发布后,n8n就不用学了!搭个AI Skills一键生成工作流
GLM-4.7发布后,n8n就不用学了!搭个AI Skills一键生成工作流今天,我又要来得罪人了。 甚至可以说,这篇文章发出来,可能会直接断了很多人的财路。
今天,我又要来得罪人了。 甚至可以说,这篇文章发出来,可能会直接断了很多人的财路。
在国内,懂技术 —— 尤其是 AI 技术的年轻人,真的不缺崭露头角的机会。
视频生成领域的「DeepSeek时刻」来了!清华开源TurboDiffusion,将AI视频生成从「分钟级」硬生生拉进「秒级」实时时代,单卡200倍加速让普通显卡也能跑出大片!
为什么大模型厂商给了 128K 的上下文窗口,却在计费上让长文本显著更贵?
想用3D高斯泼溅(3DGS)重建一座城市?
参数越小,智商越高?Gemini 3 Flash用百万级长上下文、白菜价成本,把自家大哥Pro按在地上摩擦。谷歌到底掏出了什么黑魔法,让整个大模型圈开始怀疑人生?
现有的视频编辑模型往往面临「鱼与熊掌不可兼得」的困境:专家模型精度高但依赖 Mask,通用模型虽免 Mask 但定位不准。来自悉尼科技大学和浙江大学的研究团队提出了一种全新的视频编辑框架 VideoCoF,受 LLM「思维链」启发,通过「看 - 推理 - 编辑」的流程,仅需 50k 训练数据,就在多项任务上取得了 SOTA 效果,并完美支持长视频外推!
毋庸置疑!2025年title属于「Agent元年」。
在多智能体系统的想象中,我们常常看到这样一幅图景: 多个 AI 智能体分工协作、彼此配合,像一个高效团队一样攻克复杂任务,展现出超越单体智能的 “集体智慧”。
为什么Agent在演示时无所不能,到了实际场景却频频拉胯?
除了英特尔和AMD,现在我们终于可以选择国产笔记本电脑显卡了!这款显卡的背后,饱含着中国工程师们日夜攻坚的汗水与泪水。
学霸的谎言被揭穿!一篇来自Adobe Research的论文发现,高语义理解并不会提升生成质量,反而可能破坏空间结构。用iREPA简单修改,削弱全局干扰,生成质量立即飙升 。
在过去两年里,记忆(Memory)几乎从 “可选模块” 迅速变成了 Agent 系统的 “基础设施”:对话型助手需要记住用户习惯与历史偏好;代码 / 软件工程 Agent 需要记住仓库结构、约束与修复策略;
中山大学等机构推出SpatialDreamer,通过主动心理想象和空间推理,显著提升了复杂空间任务的性能。模拟人类主动探索、想象和推理的过程,解决了现有模型在视角变换等任务中的局限,为人工智能的空间智能发展开辟了新路径。
强化学习(RL)在大语言模型和 2D 图像生成中大获成功后,首次被系统性拓展到文本到 3D 生成领域!面对 3D 物体更高的空间复杂性、全局几何一致性和局部纹理精细化的双重挑战,研究者们首次系统研究了 RL 在 3D 自回归生成中的应用!
随着AI越来越强大并进入更高风险场景,透明、安全的AI显得越发重要。OpenAI首次提出了一种「忏悔机制」,让模型的幻觉、奖励黑客乃至潜在欺骗行为变得更加可见。
MiniMax海螺视频团队不藏了!首次开源就揭晓了一个困扰行业已久的问题的答案——为什么往第一阶段的视觉分词器里砸再多算力,也无法提升第二阶段的生成效果?翻译成大白话就是,虽然图像/视频生成模型的参数越做越大、算力越堆越猛,但用户实际体验下来总有一种微妙的感受——这些庞大的投入与产出似乎不成正比,模型离完全真正可用总是差一段距离。
之前我在这篇文章(超全面免费 AI API 分享!零成本开启你的AI之旅!)中介绍过 OpenRouter 这个大模型 API 聚合平台,最近他们通过分析了100 万亿 token用户真实数据,发布了一篇研究报告,反应了真实用户的大模型使用现状。100 万亿 token 是什么概念呢?是人类所有文字资料的好几倍,这个数据量非常有说服力。
2025年底,当人类都在憧憬和等待一个全知全能的AI之神时,谷歌DeepMind却泼了一盆冷水!
在AI席卷各行各业的今天,体育圈的“智能化”走到哪一步了?
浙江大学ReLER团队开源ContextGen框架,攻克多实例图像生成中布局与身份协同控制难题。基于Diffusion Transformer架构,通过双重注意力机制,实现布局精准锚定与身份高保真隔离,在基准测试中超越开源SOTA模型,对标GPT-4o等闭源系统,为定制化AI图像生成带来新突破。
在文生图(Text-to-Image)和视频生成领域,以FLUX.1、Emu3为代表的扩散模型与自回归模型已经能生成极其逼真的画面。
长期以来,具身智能系统主要依赖「感知 - 行动」的反应式回路,缺乏对未来的预测能力。而世界模型的引入,让智能体拥有了「想象」未来的能力。
还记得之前非常火的雪宝Olaf机器人吗?
2025 年还有一周结束,年底,AI 视频圈又卷起来了。
如果你的 Gemini 突然告诉你,它感到深深的羞耻,或者它因为害怕犯错而夜不能寐,你会怎么想?
大模型的通用性和泛化性越来越强大了。
在李飞飞团队 WorldLabs 推出 Marble、引爆「世界模型(World Model)」热潮之后,一个现实问题逐渐浮出水面:世界模型的可视化与交互,依然严重受限于底层 Web 端渲染能力。
在大语言模型和文生图领域,强化学习(RL)已成为提升模型思维链与生成质量的关键方法。
过去的 2025 年,对于检索增强生成(RAG)技术而言,是经历深刻反思、激烈辩论与实质性演进的一年。