摘要
本发明公开了多尺度行为序列级联的用户意图分析及内容推荐方法,属于内容推荐技术领域。针对现有系统忽略了行为序列间的细粒度依赖关系在行为表示中贡献的问题,通过利用图卷积网络建模任意行为的不同尺度下的用户和内容特征表示;通过行为序列传递作用,建模并融合不同尺度的行为序列级联的用户和内容特征表示;将不同类型行为下的行为序列级联的用户和内容特征表示池化建模用户和内容的特征表示,并通过非采样损失策略优化;根据优化的用户和内容特征表示计算用户对内容的点击似然,生成Top‑t推荐列表。通过学习行为序列间的级联传播关系以及多行为依赖的用户和内容特征表示,提升点击率预测的准确性,在个性化内容推荐技术方面提供积极支撑。