摘要
本发明公开了一种急性放射性皮炎的预测方法及系统,该方法包括光学成像系统以及机器学习预测模型,其中光学系统基于空间频域成像(Spatial Frequency Domain Imaging,SFDI)技术实现放疗患者治疗区域的图像采集,动态监测患者在放疗疗程中皮肤的定量光学及生理指标,包括血红蛋白浓度、氧饱和度、黑色素浓度、约化散射系数等。预测模块综合考虑患者个体差异(临床特征)、放射治疗参数(剂量组学特征)、光学系统获得的皮肤光学及生理指标三个方面,运用机器学习算法构建预测模型,实现对急性放射性皮炎的准确预测,解决了目前临床上对于急性放射性皮炎的评估主要依赖于医生的经验判断,缺乏科学系统的预测方法和工具的问题。