摘要
本发明提供了一种基于神经网络的岩土体变形识别方法、装置及电子设备,涉及人工智能技术领域,通过预先构建多源岩土融合张量,实现物理一致性和数据真实性的双重保障,并针对岩土体的监测数据对应的环境因子数据进行对应多源岩土融合张量匹配,实现具备物理力学一致性与现场数据真实性的特征识别。且,通过提取数据的分支特征、应变敏感特征和多尺度时空特征,形成覆盖力学本质、实时响应、时空演化的完整特征体系,对岩土体变形本质全面捕捉。并基于自注意力机制对上述特征协同分类,能够在适应不同地质条件的变形识别场景下精准确定变形模式,实现兼具物理一致性与数据驱动优势的岩土体变形分析。