一种基于前表面荧光数据的膜污染原位污染物检测方法
# 热门搜索 #
大模型
人工智能
openai
融资
chatGPT
AITNT公众号
AITNT APP
AITNT交流群
搜索
首页
AI资讯
AI技术研报
AI监管政策
AI产品测评
AI商业项目
AI产品热榜
AI专利库
寻求报道
一种基于前表面荧光数据的膜污染原位污染物检测方法
申请号:
CN202511469773
申请日期:
2025-10-15
公开号:
CN120948490B
公开日期:
2025-12-16
类型:
发明专利
摘要
本发明涉及膜污染检测技术领域,尤其涉及一种基于前表面荧光数据的膜污染原位污染物检测方法,方法采用机器学习模型对含多种干扰的原始荧光数据进行非线性建模,进一步引入符号回归方法,对机器学习模型的预测结果进行解析处理,得到膜污染原位污染物相对浓度计算公式,对目标污染物的相对浓度进行数据校正,无需进行多种荧光参数的采集和复杂的荧光数据的校正,具有预测精度高、参数依赖少、适应干扰场景强等综合优势,适用于膜污染过程的原位荧光分析。
技术关键词
污染物检测方法
机器学习模型
原位
三维荧光光谱数据
支持向量回归模型
人工神经网络模型
梯度提升树模型
荧光特征
超滤膜
正则化参数
膜污染检测
多层感知机
纳米级二氧化硅
优化核函数
污染物特征
预测输出值
随机森林模型
符号