摘要
本申请公开了边缘计算中模型剪枝方法、装置、电子设备及存储介质,涉及边缘计算技术领域,方法包括:确定原始深度学习模型及测试数据集;确定智能搜索算法、最小精度阈值、最小总体剪枝率阈值以及滤波器权重重要度度量准则;构建智能搜索算法的目标函数;构建迁移剪枝策略;构建辅助损失微调策略;基于滤波器权重重要度度量准则,计算原始深度学习模型的权重重要度;迭代剪枝与微调;输出最优剪枝模型。本申请利用智能搜索算法,采用精度‑剪枝率的强约束多目标优化机制动态调整原始模型各层的剪枝率,能够获得更优的剪枝模型结构;同时迁移剪枝策略和辅助损失微调策略能够尽可能减少模型剪枝引起的信息损失,更好的恢复模型精度。