AI技术研报-这里有最前沿的人工智能技术解读

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
爆火的AI三宫格图片,比我们的生活更像电影。

爆火的AI三宫格图片,比我们的生活更像电影。

爆火的AI三宫格图片,比我们的生活更像电影。

最近这两天,被一个三宫格AI图片给刷屏了。 还有那三句经典的台词: “山的那边是什么。” “你不用告诉我。” “我会自己去看。” 抖音和小红书上玩的人巨多,点赞量动辄几千几万。 群里的朋友们也都在玩。

来自主题: AI技术研报
7935 点击    2025-10-31 09:43
刚刚,Anthropic证明:AI开始拥有内省能力

刚刚,Anthropic证明:AI开始拥有内省能力

刚刚,Anthropic证明:AI开始拥有内省能力

家人们,不知道你有没有试过,在和 AI 聊天时,冷不丁地问一句: “你刚刚在想什么?”

来自主题: AI技术研报
10342 点击    2025-10-30 17:30
苹果提出新型反向传播:一台iPhone 15 Pro Max就能微调LLM

苹果提出新型反向传播:一台iPhone 15 Pro Max就能微调LLM

苹果提出新型反向传播:一台iPhone 15 Pro Max就能微调LLM

用 iPhone 本地跑大模型已经不是新鲜事了,但能不能在 iPhone 上微调模型呢?

来自主题: AI技术研报
8803 点击    2025-10-30 17:27
天下苦VAE久矣:阿里高德提出像素空间生成模型训练范式, 彻底告别VAE依赖

天下苦VAE久矣:阿里高德提出像素空间生成模型训练范式, 彻底告别VAE依赖

天下苦VAE久矣:阿里高德提出像素空间生成模型训练范式, 彻底告别VAE依赖

近年来,基于扩散模型的图像生成技术发展迅猛,催生了Stable Diffusion、Midjourney等一系列强大的文生图应用。然而,当前主流的训练范式普遍依赖一个核心组件——变分自编码器(VAE),这也带来了长久以来困扰研究者们的几个问题:

来自主题: AI技术研报
5586 点击    2025-10-30 17:03
ICCV 2025 | 港科、牛津大学发布AlignGuard,文图生成模型可规模化安全对齐框架

ICCV 2025 | 港科、牛津大学发布AlignGuard,文图生成模型可规模化安全对齐框架

ICCV 2025 | 港科、牛津大学发布AlignGuard,文图生成模型可规模化安全对齐框架

随着文图生成模型的广泛应用,模型本身有限的安全防护机制使得用户有机会无意或故意生成有害的图片内容,并且该内容有可能会被恶意使用。现有的安全措施主要依赖文本过滤或概念移除的策略,只能从文图生成模型的生成能力中移除少数几个概念。

来自主题: AI技术研报
9009 点击    2025-10-30 17:01
数据智能体全景报告发布!你的数据智能体在哪个 Level?

数据智能体全景报告发布!你的数据智能体在哪个 Level?

数据智能体全景报告发布!你的数据智能体在哪个 Level?

当你被扔进一片数据的汪洋,老板却期待你一眼看穿本质—— 你是否也曾幻想,有一位不知疲倦、全知全能的 AI 数据专家,能替你搞定从数据管理、准备,到分析的一切工作?

来自主题: AI技术研报
9887 点击    2025-10-30 16:36
中移动九天团队MultiPL-MoE:全新Hybrid-MoE架构用于增强通用大模型低资源代码能力

中移动九天团队MultiPL-MoE:全新Hybrid-MoE架构用于增强通用大模型低资源代码能力

中移动九天团队MultiPL-MoE:全新Hybrid-MoE架构用于增强通用大模型低资源代码能力

大语言模型(LLM)虽已展现出卓越的代码生成潜力,却依然面临着一道艰巨的挑战:如何在有限的计算资源约束下,同步提升对多种编程语言的理解与生成能力,同时不损害其在主流语言上的性能?

来自主题: AI技术研报
7438 点击    2025-10-30 16:23
700位医疗高管告诉你,为什么AI最先跑通的是医疗?

700位医疗高管告诉你,为什么AI最先跑通的是医疗?

700位医疗高管告诉你,为什么AI最先跑通的是医疗?

医疗机构选择AI,只看这三点。很长时间里,医疗始终被认为是新兴技术应用里最难啃的阵地。 就拿医疗数字化来说,就走得极为不容易。在当下7400亿美元的美国医疗管理支出中,IT 预算仅占630亿美元。

来自主题: AI技术研报
9235 点击    2025-10-30 12:26
代码自己改自己?我用1000万DeepSeek跑通了赫胥黎-歌德尔机HGM(附避坑指南)

代码自己改自己?我用1000万DeepSeek跑通了赫胥黎-歌德尔机HGM(附避坑指南)

代码自己改自己?我用1000万DeepSeek跑通了赫胥黎-歌德尔机HGM(附避坑指南)

读者,您好!今天想跟您聊一个硬核又极具启发性的项目——HGM(Huxley-Gödel Machine)。我刚刚一起花了几个小时,从环境配置的坑,一路“打怪升级”到让它最终跑完,相信您可能已经从别的公众号上看到了这篇文章。

来自主题: AI技术研报
8017 点击    2025-10-30 11:24
高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。

来自主题: AI技术研报
6884 点击    2025-10-30 10:55
牛津VGG、港大、上交发布ELIP:超越CLIP等,多模态图片检索的增强视觉语言大模型预训练

牛津VGG、港大、上交发布ELIP:超越CLIP等,多模态图片检索的增强视觉语言大模型预训练

牛津VGG、港大、上交发布ELIP:超越CLIP等,多模态图片检索的增强视觉语言大模型预训练

多模态图片检索是计算机视觉和多模态机器学习领域很重要的一个任务。现在大家做多模态图片检索一般会用 CLIP/SigLIP 这种视觉语言大模型,因为他们经过了大规模的预训练,所以 zero-shot 的能力比较强。

来自主题: AI技术研报
5976 点击    2025-10-30 10:42
单条演示即可抓取一切:北大团队突破通用抓取,适配所有灵巧手本体

单条演示即可抓取一切:北大团队突破通用抓取,适配所有灵巧手本体

单条演示即可抓取一切:北大团队突破通用抓取,适配所有灵巧手本体

在灵巧手通用抓取的研究中,由于动作空间维度高、任务具有长程探索特征且涉及多样化物体,传统强化学习(RL)面临探索效率低、奖励函数及训练过程设计复杂等挑战。

来自主题: AI技术研报
5740 点击    2025-10-30 10:26
让你的Mac用上DeepSeek-OCR:一个从0到1的开源适配之旅

让你的Mac用上DeepSeek-OCR:一个从0到1的开源适配之旅

让你的Mac用上DeepSeek-OCR:一个从0到1的开源适配之旅

DeepSeek-OCR这段时间非常火,但官方开源的文件是“按 NVIDIA/CUDA 习惯写的 Linux 版推理脚本+模型权重”,而不是“跨设备跨后端”的通吃实现,因此无法直接在苹果设备上运行,对于Mac用户来说,在许多新模型诞生的第一时间,往往只能望“模”兴叹。

来自主题: AI技术研报
7164 点击    2025-10-29 17:10
双管齐下:联邦学习防投毒攻击与梯度泄露,华南理工深北莫研究成果登上TMC与IoT

双管齐下:联邦学习防投毒攻击与梯度泄露,华南理工深北莫研究成果登上TMC与IoT

双管齐下:联邦学习防投毒攻击与梯度泄露,华南理工深北莫研究成果登上TMC与IoT

AI风起云涌,数据隐私如履薄冰。华南理工大学联手深圳北理莫斯科大学,推出FedMSBA与FedMAR,筑成联邦学习的安全堡垒,守护个人隐私!

来自主题: AI技术研报
5796 点击    2025-10-29 16:51
TPAMI 2025 | AI对抗迁移性评估的「拨乱反正」:那些年效果虚高的攻防算法们

TPAMI 2025 | AI对抗迁移性评估的「拨乱反正」:那些年效果虚高的攻防算法们

TPAMI 2025 | AI对抗迁移性评估的「拨乱反正」:那些年效果虚高的攻防算法们

对抗样本(adversarial examples)的迁移性(transferability)—— 在某个模型上生成的对抗样本能够同样误导其他未知模型 —— 被认为是威胁现实黑盒深度学习系统安全的核心因素。尽管现有研究已提出复杂多样的迁移攻击方法,却仍缺乏系统且公平的方法对比分析:(1)针对攻击迁移性,未采用公平超参设置的同类攻击对比分析;(2)针对攻击隐蔽性,缺乏多样指标。

来自主题: AI技术研报
5819 点击    2025-10-29 16:05
世界模型==VQA?机器人不用想象画面,预测语义就够了

世界模型==VQA?机器人不用想象画面,预测语义就够了

世界模型==VQA?机器人不用想象画面,预测语义就够了

对于机器人来说,世界模型真的有必要想象出精确的未来画面吗?在一篇新论文中,来自华盛顿大学、索尼 AI 的研究者提出了这个疑问。

来自主题: AI技术研报
5781 点击    2025-10-29 10:44
3B Image Captioning小钢炮重磅来袭,性能比肩Qwen2.5-VL-72B

3B Image Captioning小钢炮重磅来袭,性能比肩Qwen2.5-VL-72B

3B Image Captioning小钢炮重磅来袭,性能比肩Qwen2.5-VL-72B

今天推荐一个 Dense Image Captioning 的最新技术 —— CapRL (Captioning Reinforcement Learning)。CapRL 首次成功将 DeepSeek-R1 的强化学习方法应用到 image captioning 这种开放视觉任务,创新的以实用性重新定义 image captioning 的 reward。

来自主题: AI技术研报
9053 点击    2025-10-29 10:24
仅需10%思维链标注,等同全量性能!计算所发布推理监督新范式

仅需10%思维链标注,等同全量性能!计算所发布推理监督新范式

仅需10%思维链标注,等同全量性能!计算所发布推理监督新范式

大语言模型(LLMs)推理能力近年来快速提升,但传统方法依赖大量昂贵的人工标注思维链。中国科学院计算所团队提出新框架PARO,通过让模型学习固定推理模式自动生成思维链,只需大模型标注1/10数据就能达到全量人工标注的性能。这种方法特别适合像金融、审计这样规则清晰的领域,为高效推理监督提供了全新思路。

来自主题: AI技术研报
5605 点击    2025-10-29 10:15
用「进化+压力测试」自动生成的竞赛级编程题,各家大模型谁更hold住?

用「进化+压力测试」自动生成的竞赛级编程题,各家大模型谁更hold住?

用「进化+压力测试」自动生成的竞赛级编程题,各家大模型谁更hold住?

在当前评测生成式模型代码能力的浪潮中,传统依赖人工编写的算法基准测试集,正日益暴露出可扩展性不足与数据污染严重两大瓶颈。

来自主题: AI技术研报
6900 点击    2025-10-29 10:03
VaseVQA:考古领域实现专家级,诊断+补弱RL框架

VaseVQA:考古领域实现专家级,诊断+补弱RL框架

VaseVQA:考古领域实现专家级,诊断+补弱RL框架

在文化遗产与人工智能的交叉处,有一类问题既美也难:如何让机器「看懂」古希腊的陶器——不仅能识别它的形状或图案,还能推断年代、产地、工坊甚至艺术归属?有研究人员给出了一条实用且富有启发性的答案:把大型多模态模型(MLLM)放在「诊断—补弱—精细化评估」的闭环中训练,并配套一个结构化的评测基准,从而让模型在高度专业化的文化遗产领域表现得更接近专家级能力。

来自主题: AI技术研报
6438 点击    2025-10-29 09:53
蚂蚁新报告!全盘公开Ling 2.0训练细节,性能突破的四大关键曝光

蚂蚁新报告!全盘公开Ling 2.0训练细节,性能突破的四大关键曝光

蚂蚁新报告!全盘公开Ling 2.0训练细节,性能突破的四大关键曝光

蚂蚁集团这波操作大圈粉!智东西10月28日报道,10月25日,蚂蚁集团在arXiv上传了一篇技术报告,一股脑将自家2.0系列大模型训练的独家秘籍全盘公开。今年9月至今,蚂蚁集团百灵大模型Ling 2.0系列模型陆续亮相,其万亿参数通用语言模型Ling-1T多项指标位居开源模型的榜首

来自主题: AI技术研报
8246 点击    2025-10-28 21:47
DeepMind再登Nature:AI Agent造出了最强RL算法!

DeepMind再登Nature:AI Agent造出了最强RL算法!

DeepMind再登Nature:AI Agent造出了最强RL算法!

当AI开始「自己学会学习」,人类的角色正在被重写。DeepMind最新研究DiscoRL,让智能体在多环境交互中自主发现强化学习规则——无需人类设计算法。它在Atari基准中击败MuZero,在从未见过的游戏中依旧稳定高效。

来自主题: AI技术研报
9152 点击    2025-10-28 14:56
大模型在具身推理上「翻车」了?4496 道题全面揭示短板

大模型在具身推理上「翻车」了?4496 道题全面揭示短板

大模型在具身推理上「翻车」了?4496 道题全面揭示短板

具身智能是近年来非常火概念。一个智能体(比如人)能够在环境中完成感知、理解与决策的闭环,并通过环境反馈不断进入新一轮循环,直至任务完成。这一过程往往依赖多种技能,涵盖了底层视觉对齐,空间感知,到上层决策的不同能力,这些能力便是广义上的具身智能。

来自主题: AI技术研报
5861 点击    2025-10-28 13:44