一张照片秒生好莱坞级运镜!子弹时间/推拉环绕,AI视频注入电影级灵魂
一张照片秒生好莱坞级运镜!子弹时间/推拉环绕,AI视频注入电影级灵魂就在刚刚,Higgsfiled AI推出Motion Controls AI视频生成,在模仿电影级别的动作捕捉删上取得了新进展!不论是是360度环绕拍摄还是子弹时间都是信手拈来,从此就像口袋里装着一个「摄影组」,电影级别的画面也可以由AI代劳。
就在刚刚,Higgsfiled AI推出Motion Controls AI视频生成,在模仿电影级别的动作捕捉删上取得了新进展!不论是是360度环绕拍摄还是子弹时间都是信手拈来,从此就像口袋里装着一个「摄影组」,电影级别的画面也可以由AI代劳。
原生多模态Llama 4终于问世,开源王座一夜易主!首批共有两款模型Scout和Maverick,前者业界首款支持1000万上下文单H100可跑,后者更是一举击败了DeepSeek V3。目前,2万亿参数巨兽还在训练中。
想象一下,一座生机勃勃的 3D 城市在你眼前瞬间成型 —— 没有漫长的计算,没有庞大的存储需求,只有极速的生成和惊人的细节。
近年来,大语言模型(LLM)的性能提升逐渐从训练时规模扩展转向推理阶段的优化,这一趋势催生了「测试时扩展(test-time scaling)」的研究热潮。
语言是离散的,所以适合用自回归模型来生成;而图像是连续的,所以适合用扩散模型来生成。在生成模型发展早期,这种刻板印象广泛存在于很多研究者的脑海中。
文生图 or 图生文?不必纠结了!
大型语言模型 (LLM) 在软体机器人设计领域展现出了令人振奋的应用潜力。
本文介绍了 FoundationStereo,一种用于立体深度估计的基础模型,旨在实现强大的零样本泛化能力。
在人工智能飞速发展的今天,LLM 的能力令人叹为观止,但其局限性也日益凸显 —— 它们往往被困于训练数据的「孤岛」,无法直接触及实时信息或外部工具。
推荐大模型也可生成式,并且首次在国产昇腾NPU上成功部署!
最新研究发现,LLM在面对人格测试时,会像人一样「塑造形象」,提升外向性和宜人性得分。AI的讨好倾向,可能导致错误的回复,需要引起警惕。
大模型虽然推理能力增强,却常常「想太多」,回答简单问题也冗长复杂。Rice大学的华人研究者提出高效推理概念,探究了如何帮助LLM告别「过度思考」,提升推理效率。
最近,像 OpenAI o1/o3、DeepSeek-R1 这样的大型推理模型(Large Reasoning Models,LRMs)通过加长「思考链」(Chain-of-Thought,CoT)在推理任务上表现惊艳。
AI 可能「借鉴」了什么参考内容,但压根不提。
Attention 还在卷自己。
随着视频内容的重要性日益提升,如何处理理解长视频成为多模态大模型面临的关键挑战。长视频理解能力,对于智慧安防、智能体的长期记忆以及多模态深度思考能力有着重要价值。
DeepSeek新论文来了!在清华研究者共同发布的研究中,他们发现了奖励模型推理时Scaling的全新方法。DeepSeek R2,果然近了。
作为一名从业七年的程序员,最近听到很多程序员朋友都喜提了n+1裁员大礼包。
前几天有朋友还在问我GPU租赁市场的情况,正好SemiAnalysis出了这篇文章:GPU云ClusterMA评级系统 | GPU租用指南。
当大多数AI Agent仍在挣扎于结构化推理能力不足的困境时,本文带来了一个来自认知科学领域的突破性解决方案。
近来风头正盛的GPT-4.5,不仅在日常问答中展现出惊人的上下文连贯性,在设计、咨询等需要高度创造力的任务中也大放异彩。
专门解决电信行业用户行为建模的难题。
OpenAI o3推理成本从3000美元飙至3万美元,暴增10倍。o3-high靠暴力试错生成4300万字解题,却被ARC-AGI「除名」。
简单的任务,传统的Transformer却错误率极高。Meta FAIR团队重磅推出多token注意力机制(MTA),精准捕捉复杂信息,带来模型性能飞升!
低秩适配器(LoRA)能够在有监督微调中以约 5% 的可训练参数实现全参数微调 90% 性能。
谷歌DeepMind研发的DreamerV3实现重大突破:无需任何人类数据,通过强化学习与「世界模型」,自主完成《我的世界》中极具挑战的钻石收集任务。该成果被视为通往AGI的一大步,并已登上Nature。
随着人工智能合成视频(AIGC)技术的飞速发展,我们正步入一个由 AI 主导的视频创作时代。
自己「打脸」自己?
通过完全启用并发多块执行,支持任意专家数量(MAX_EXPERT_NUMBER==256),并积极利用共享内存(5kB LDS)和寄存器(52 VGPRs,48 SGPRs),MoE Align & Sort逻辑被精心设计,实现了显著的性能提升:A100提升3倍,H200提升3倍,MI100提升10倍,MI300X/MI300A提升7倍...
在InternVL-2.5上实现10倍吞吐量提升,模型性能几乎无损失。