AI技术研报-这里有最前沿的人工智能技术解读

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
谢赛宁新作:VAE退役,RAE当立

谢赛宁新作:VAE退役,RAE当立

谢赛宁新作:VAE退役,RAE当立

谢赛宁团队最新研究给出了答案——VAE的时代结束,RAE将接力前行。其中表征自编码器RAE(Representation Autoencoders)是一种用于扩散Transformer(DiT)训练的新型自动编码器,其核心设计是用预训练的表征编码器(如DINO、SigLIP、MAE 等)与训练后的轻量级解码器配对,从而替代传统扩散模型中依赖的VAE(变分自动编码器)。

来自主题: AI技术研报
7184 点击    2025-10-14 16:34
AI产品在亚洲疯狂增长,开发者们如何抓住注意力涣散的年轻人

AI产品在亚洲疯狂增长,开发者们如何抓住注意力涣散的年轻人

AI产品在亚洲疯狂增长,开发者们如何抓住注意力涣散的年轻人

根据 Sensor Tower 数据显示,2025 H1 AI 应用的下载量达到 17 亿次,增长 67%,IAP 收入总计达到 19 亿美元,增幅达到 100.6%。在走过了概念验证阶段后,AI 应用正成为一股很强的增长动力,给已经相对平静的应用市场注入了活力。

来自主题: AI技术研报
7064 点击    2025-10-14 13:17
剑桥揭开大模型翻车黑箱!别再怪它不懂推理,是行动出错了

剑桥揭开大模型翻车黑箱!别再怪它不懂推理,是行动出错了

剑桥揭开大模型翻车黑箱!别再怪它不懂推理,是行动出错了

为什么大模型,在执行长时任务时容易翻车?这让一些专家,开始质疑大模型的推理能力,认为它们是否只是提供了「思考的幻觉」。近日,剑桥大学等机构的一项研究证明:问题不是出现在推理上,而是出在大模型的执行能力上。

来自主题: AI技术研报
7402 点击    2025-10-14 11:10
真正的AI竞争力,藏在大模型“后训练”这一步

真正的AI竞争力,藏在大模型“后训练”这一步

真正的AI竞争力,藏在大模型“后训练”这一步

当全球的目光还在聚焦基座模型的参数竞赛时,一场更为深刻的变革正在悄然发生——后训练(Post-Training)。

来自主题: AI技术研报
7582 点击    2025-10-14 10:16
产品经理必读:AI Agent 架构指南

产品经理必读:AI Agent 架构指南

产品经理必读:AI Agent 架构指南

这是一份为正在开发 AI Agent 的产品经理准备的完整指南,介绍了 Agent 架构、编排模式等话题。

来自主题: AI技术研报
6120 点击    2025-10-14 10:10
后果真实且残酷!哈佛研究揭示AI如何冲击就业市场

后果真实且残酷!哈佛研究揭示AI如何冲击就业市场

后果真实且残酷!哈佛研究揭示AI如何冲击就业市场

两位哈佛学者通过研究6200万份简历和近2亿条招聘职位数据,揭示了AI对就业带来的真实、残酷的冲击:它不是无差别地针对所有人,而是在大量“吞噬”初级岗位,让那些刚刚踏入社会的年轻人,面临着空前陡峭、狭窄的职业起跑线。与此同时,为数众多的普通院校毕业生群体受到的冲击更为显著。

来自主题: AI技术研报
8041 点击    2025-10-14 09:59
Being-VL的视觉BPE路线:把「看」和「说」真正统一起来

Being-VL的视觉BPE路线:把「看」和「说」真正统一起来

Being-VL的视觉BPE路线:把「看」和「说」真正统一起来

为此,北大、UC San Diego 和 BeingBeyond 联合提出一种新的方法——Being-VL 的视觉 BPE 路线。Being-VL 的出发点是把这一步后置:先在纯自监督、无 language condition 的设定下,把图像离散化并「分词」,再与文本在同一词表、同一序列中由同一 Transformer 统一建模,从源头缩短跨模态链路并保留视觉结构先验。

来自主题: AI技术研报
7169 点击    2025-10-14 09:58
腾讯开源世界第一生图模型,我总结了16个邪修玩法

腾讯开源世界第一生图模型,我总结了16个邪修玩法

腾讯开源世界第一生图模型,我总结了16个邪修玩法

讲真,AI生图圈的内卷速度简直离谱。8月底的Nano Banana、9月中的即梦4.0已经把画质和效果卷到了一个新高度,但我还在纠结到底该把谁设为主力工具,因为总觉得他们差点什么:不是出错就是不懂场景。

来自主题: AI技术研报
9782 点击    2025-10-14 09:57
告别「解码器饥饿」!中国科学院NeurIPS推SpaceServe,高并发克星

告别「解码器饥饿」!中国科学院NeurIPS推SpaceServe,高并发克星

告别「解码器饥饿」!中国科学院NeurIPS推SpaceServe,高并发克星

在中国科学院计算技术研究所入选NeurIPS 2025的新论文中,提出了SpaceServe的突破性架构,首次将LLM推理中的P/D分离扩展至多模态场景,通过EPD三阶解耦与「空分复用」,系统性地解决了MLLM推理中的行头阻塞难题。

来自主题: AI技术研报
7682 点击    2025-10-13 16:08
ICLR 2026惊现SAM 3,分割一切的下一步:让模型理解「概念」

ICLR 2026惊现SAM 3,分割一切的下一步:让模型理解「概念」

ICLR 2026惊现SAM 3,分割一切的下一步:让模型理解「概念」

说出概念,SAM 3 就明白你在说什么,并在所有出现的位置精确描绘出边界。 Meta 的「分割一切」再上新? 9 月 12 日,一篇匿名论文「SAM 3: SEGMENT ANYTHING WITH CONCEPTS」登陆 ICLR 2026,引发网友广泛关注。

来自主题: AI技术研报
6137 点击    2025-10-13 16:03
抖音&LV-NUS开源多模态新模,以小博大刷新SOTA,8B推理比肩GPT-4o

抖音&LV-NUS开源多模态新模,以小博大刷新SOTA,8B推理比肩GPT-4o

抖音&LV-NUS开源多模态新模,以小博大刷新SOTA,8B推理比肩GPT-4o

2B模型在多个基准位列4B参数以下开源第一。 抖音SAIL团队与LV-NUS Lab联合推出的多模态大模型SAIL-VL2。

来自主题: AI技术研报
6812 点击    2025-10-13 15:58
Bug变奖励:AI的小失误,揭开创造力真相!

Bug变奖励:AI的小失误,揭开创造力真相!

Bug变奖励:AI的小失误,揭开创造力真相!

扩散模型本该只是复制机器,却一次次画出「六指人像」甚至是陌生场景。最新研究发现,AI的「创造力」其实是架构里的副作用。有学者大胆推测人类的灵感或许也是如此。当灵感成了固定公式,人类和AI的差别还有多少?

来自主题: AI技术研报
6150 点击    2025-10-13 15:53
为MoE解绑:全新「专家即服务」推理架构发布,超细粒度扩展锐减37.5%成本

为MoE解绑:全新「专家即服务」推理架构发布,超细粒度扩展锐减37.5%成本

为MoE解绑:全新「专家即服务」推理架构发布,超细粒度扩展锐减37.5%成本

近年来,大型语言模型的参数规模屡创新高,随之而来的推理开销也呈指数级增长。如何降低超大模型的推理成本,成为业界关注的焦点之一。Mixture-of-Experts (MoE,混合专家) 架构通过引入大量 “专家” 子模型,让每个输入仅激活少数专家,从而在参数规模激增的同时避免推理计算量同比增长。

来自主题: AI技术研报
7860 点击    2025-10-13 15:49
腾讯开源强化学习新算法!让智能体无需专家示范就“自学成才”,还即插即用零成本接入

腾讯开源强化学习新算法!让智能体无需专家示范就“自学成才”,还即插即用零成本接入

腾讯开源强化学习新算法!让智能体无需专家示范就“自学成才”,还即插即用零成本接入

让智能体自己摸索新方法,还模仿自己的成功经验。腾讯优图实验室开源强化学习算法——SPEAR(Self-imitation with Progressive Exploration for Agentic Reinforcement Learning)。

来自主题: AI技术研报
6995 点击    2025-10-13 15:45
NeurIPS 2025 Spotlight | GeoSVR:稀疏体素的新潜力——超越3DGS系列的高精度三维表面重建

NeurIPS 2025 Spotlight | GeoSVR:稀疏体素的新潜力——超越3DGS系列的高精度三维表面重建

NeurIPS 2025 Spotlight | GeoSVR:稀疏体素的新潜力——超越3DGS系列的高精度三维表面重建

近年来,NeRF、SDF 与 3D Gaussian Splatting 等方法大放异彩,让 AI 能从图像中恢复出三维世界。但随着相关技术路线的发展与完善,瓶颈问题也随之浮现:

来自主题: AI技术研报
6586 点击    2025-10-13 15:38
OpenAI 的颠覆革命|狂热的2024·沸腾的2025丨Xsignal

OpenAI 的颠覆革命|狂热的2024·沸腾的2025丨Xsignal

OpenAI 的颠覆革命|狂热的2024·沸腾的2025丨Xsignal

2022年11月,OpenAI的ChatGPT问世,这一事件不仅是技术创新的里程碑,更被视为重塑全球AI战略版图的关键转折点,它标志着新一轮大国AI竞赛的序幕被正式拉开。在此背景下,其增长的规模与速度本身,就是一种颠覆性的战略壁垒。

来自主题: AI技术研报
11006 点击    2025-10-13 14:13
“AI版LeCun”自己讲解论文,自我进化智能体框架生成精美演讲视频

“AI版LeCun”自己讲解论文,自我进化智能体框架生成精美演讲视频

“AI版LeCun”自己讲解论文,自我进化智能体框架生成精美演讲视频

AI自己讲明白论文,还能生成更美观的幻灯片。加州大学圣塔芭芭拉(UCSB)与圣克鲁兹(UCSC)的研究者提出EvoPresent,一个能够自我进化的学术演讲智能体框架,让AI不仅能“讲清楚论文”,还能“讲得好看”。

来自主题: AI技术研报
8014 点击    2025-10-13 12:24
第二代InfLLM开源,同尺寸快三倍!零参数,可训练稀疏注意力

第二代InfLLM开源,同尺寸快三倍!零参数,可训练稀疏注意力

第二代InfLLM开源,同尺寸快三倍!零参数,可训练稀疏注意力

InfLLM-V2是一种可高效处理长文本的稀疏注意力模型,仅需少量长文本数据即可训练,且性能接近传统稠密模型。通过动态切换短长文本处理模式,显著提升长上下文任务的效率与质量。从短到长低成本「无缝切换」,预填充与解码双阶段加速,释放长上下文的真正生产力。

来自主题: AI技术研报
8089 点击    2025-10-13 11:55
NeurIPS 2025 Spotlight | PhysX-3D:面向真实物理世界的3D资产生成范式

NeurIPS 2025 Spotlight | PhysX-3D:面向真实物理世界的3D资产生成范式

NeurIPS 2025 Spotlight | PhysX-3D:面向真实物理世界的3D资产生成范式

3D 生成正从纯虚拟走向物理真实,现有的 3D 生成方法主要侧重于几何结构与纹理信息,而忽略了基于物理属性的建模。

来自主题: AI技术研报
8089 点击    2025-10-13 11:42
机器人「看片」自学新技能:NovaFlow从生成视频中提取动作流,实现零样本操控

机器人「看片」自学新技能:NovaFlow从生成视频中提取动作流,实现零样本操控

机器人「看片」自学新技能:NovaFlow从生成视频中提取动作流,实现零样本操控

构建能够在新环境中、无需任何针对性训练就能执行多样化任务的通用机器人,是机器人学领域一个长期追逐的圣杯。近年来,随着大型语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,许多研究者将希望寄托于视觉 - 语言 - 动作(VLA)模型,期望它们能复刻 LLM 和 VLM 在泛化性上取得的辉煌。

来自主题: AI技术研报
7502 点击    2025-10-13 11:02
清华大学x生数科技:从波形到隐空间,AudioLBM引领音频超分新范式

清华大学x生数科技:从波形到隐空间,AudioLBM引领音频超分新范式

清华大学x生数科技:从波形到隐空间,AudioLBM引领音频超分新范式

在这一背景下,清华大学与生数科技(Shengshu AI)团队围绕桥类生成模型与音频超分任务展开系统研究,先后在语音领域顶级会议ICASSP 2025和机器学习顶级会议NeurIPS 2025发表了两项连续成果:

来自主题: AI技术研报
7885 点击    2025-10-13 10:30
RL 将如何提高具身大模型 VLA 泛化性?清华大学团队NeurIPS 2025文章分析 RL 与 SFT 泛化性差异

RL 将如何提高具身大模型 VLA 泛化性?清华大学团队NeurIPS 2025文章分析 RL 与 SFT 泛化性差异

RL 将如何提高具身大模型 VLA 泛化性?清华大学团队NeurIPS 2025文章分析 RL 与 SFT 泛化性差异

在具身智能领域,视觉 - 语言 - 动作(VLA)大模型正展现出巨大潜力,但仍面临一个关键挑战:当前主流的有监督微调(SFT)训练方式,往往让模型在遇到新环境或任务时容易出错,难以真正做到类人般的泛化

来自主题: AI技术研报
8213 点击    2025-10-13 10:28
破解MoE模型“规模越大,效率越低”困境!中科院自动化所提出新框架

破解MoE模型“规模越大,效率越低”困境!中科院自动化所提出新框架

破解MoE模型“规模越大,效率越低”困境!中科院自动化所提出新框架

大模型参数量飙升至千亿、万亿级,却陷入“规模越大,效率越低” 困境?中科院自动化所新研究给出破局方案——首次让MoE专家告别“静态孤立”,开启动态“组队学习”。

来自主题: AI技术研报
7722 点击    2025-10-13 10:26
告别AI“乱画图表”!港中文团队发布首个结构化图像生成编辑系统

告别AI“乱画图表”!港中文团队发布首个结构化图像生成编辑系统

告别AI“乱画图表”!港中文团队发布首个结构化图像生成编辑系统

AI竟然画不好一张 “准确” 的图表?AI生图标杆如FLUX.1、GPT-Image,已经能生成媲美摄影大片的自然图像,却在柱状图、函数图这类结构化图像上频频出错,要么逻辑混乱、数据错误,要么就是标签错位。

来自主题: AI技术研报
9099 点击    2025-10-12 15:03
听说,大家都在梭后训练?最佳指南来了

听说,大家都在梭后训练?最佳指南来了

听说,大家都在梭后训练?最佳指南来了

既然后训练这么重要,那么作为初学者,应该掌握哪些知识?大家不妨看看这篇博客《Post-training 101》,可以很好的入门 LLM 后训练相关知识。从对下一个 token 预测过渡到指令跟随; 监督微调(SFT) 基本原理,包括数据集构建与损失函数设计;

来自主题: AI技术研报
6495 点击    2025-10-12 14:59
刚刚,Meta风雨飘摇中发了篇重量级论文,作者几乎全是华人

刚刚,Meta风雨飘摇中发了篇重量级论文,作者几乎全是华人

刚刚,Meta风雨飘摇中发了篇重量级论文,作者几乎全是华人

风雨飘摇中的Meta,于昨天发布了一篇重量级论文,提出了一种被称作「早期经验」(Early Experience)的全新范式,让AI智能体「无师自通」,为突破强化学习瓶颈提供了一种新思路。

来自主题: AI技术研报
8625 点击    2025-10-12 11:01
超越ZIP的无损压缩来了!华盛顿大学让大模型成为无损文本压缩器

超越ZIP的无损压缩来了!华盛顿大学让大模型成为无损文本压缩器

超越ZIP的无损压缩来了!华盛顿大学让大模型成为无损文本压缩器

当大语言模型生成海量数据时,数据存储的难题也随之而来。对此,华盛顿大学(UW)SyFI实验室的研究者们提出了一个创新的解决方案:LLMc,即利用大型语言模型自身进行无损文本压缩的引擎。

来自主题: AI技术研报
6264 点击    2025-10-12 11:00