
用AgenticLU长上下文理解,LLM澄清链CoC实现自学,答案召回率高达97.8% | 最新
用AgenticLU长上下文理解,LLM澄清链CoC实现自学,答案召回率高达97.8% | 最新LLM一个突出的挑战是如何有效处理和理解长文本。就像下图所示,准确率会随着上下文长度显著下降,那么究竟应该怎样提升LLM对长文本理解的准确率呢?
LLM一个突出的挑战是如何有效处理和理解长文本。就像下图所示,准确率会随着上下文长度显著下降,那么究竟应该怎样提升LLM对长文本理解的准确率呢?
技术上,从传统的关键词检索,到RAG,大家已经不满足于只是生成对应的简单回答。而是期待大语言模型能够更好地应用于企业级场景,产生更大的价值。不久前,OpenAI推出了最新的深度内容生成神器“DeepResearch”,用户只需一个"特斯拉的合理市值是多少"的提问,
RAG是一种基于“检索结果”做推理的应用,这大大限制了类似DeepSeek-R1模型的发挥空间。但又的确存在将RAG的准确性与DeepSeek深度思考能力结合的场景,而不仅仅是回答事实性问题。比如:
人工智能(AI)系统或将逃脱人类控制,欺骗人类,甚至给全人类带来灾难性的后果。
最初,查询扩展是为那些靠关键词匹配来判断相关性的搜索系统设计的,比如 tf-idf 或其他稀疏向量方案。这类方法有些天然的缺陷:词语稍微变个形式,像 "ran" 和 "running",或者 "optimise" 和 "optimize",都会影响匹配结果。虽然可以用语言预处理来解决一部分问题,但远远不够。技术术语、同义词和相关词就更难处理了。
去年 8 月,Codeium 完成了由 General Catalyst、Kleiner Perkins 等参与的 1.5 亿美元融资,估值来到 12.5 亿美元,是这些老牌基金在 AI Coding 领域下的重注。之后在 11 月 Codeium 正式发布了 Agentic IDE Windsurf,与 Cursor/Devin 进行差异化竞争。
先是三星宣布智谱的Agentic GLM成为其新手机Galaxy S25的AI能力来源,紧接着The Information爆料,在经历了近一年的模型测试与合作伙伴探索后,苹果终于敲定了中国市场的合作伙伴:阿里巴巴。这意味着,中国iPhone用户很可能在今年迎来一个由国产大模型驱动的iPhone。
刚刚,AI大牛吴恩达官宣创业公司新成果——Agentic Object Detection
一个新框架,让Qwen版o1成绩暴涨: 在博士级别的科学问答、数学、代码能力的11项评测中,能力显著提升,拿下10个第一! 这就是人大、清华联手推出的最新「Agentic搜索增强推理模型框架」Search-o1的特别之处。
英伟达CEO黄仁勋最近在CES 上的主题演讲及问答,分享了他对未来的愿景。这显然是Agentic AI和Robotics的结合,他称之为Physical AI。