上交×蚂蚁发布 DiagGym:以世界模型驱动交互式医学诊断智能体
上交×蚂蚁发布 DiagGym:以世界模型驱动交互式医学诊断智能体临床诊断并非一次性的「快照」,而是一场动态交互、不断「探案」的推理过程。然而,当下的大模型大多基于静态数据训练,难以掌握真实诊疗中充满不确定性的多轮决策轨迹。如何让AI学会「追问」、选择检查,并一步步抽丝剥茧,迈向正确诊断?
临床诊断并非一次性的「快照」,而是一场动态交互、不断「探案」的推理过程。然而,当下的大模型大多基于静态数据训练,难以掌握真实诊疗中充满不确定性的多轮决策轨迹。如何让AI学会「追问」、选择检查,并一步步抽丝剥茧,迈向正确诊断?
AI 最有用的一集出现了。昨天我刷到一个新闻,一个普通网友,用每月 20 美元的 Claude,把医院开出的 19.5 万美元 账单直接砍到了 3.3 万美元。换成人民币,就是从约 150 万,砍到了 20 多万。
智东西11月4日消息,11月3日,美国生成式AI医疗独角兽Hippocratic AI宣布完成1.26亿美元(约合人民币8.97亿元)的C轮融资,谷歌母公司Alphabet旗下独立成长基金CapitalG参投。此轮融资也让该公司的估值达35亿美元(约合人民币249.24亿元),总融资额达到4.04亿美元(约合人民币28.77亿美元)。
在人工智能领域,推理语言模型(RLM)虽然在数学与编程任务中已展现出色性能,但在像医学这样高度依赖专业知识的场景中,一个亟待回答的问题是:复杂的多步推理会帮助模型提升医学问答能力吗?要回答这个问题,需要构建足够高质量的医学推理数据,当前医学推理数据的构建存在以下挑战:
当医生按下Enter键,AI就能决定人的生死!美国华盛顿大学,一项名为「AI代理人」的研究,试图让算法预测昏迷患者的生死意愿。支持者说这是医疗新纪元,反对者担心它只是复制偏见的机器。当AI学会理解生命,人类的怜悯、犹豫与责任,会不会被一串数据取代?
蛋白质大模型的最新突破,来自中国!最近,百奥几何「悄悄地」发布了新一代全场景原子级蛋白质基础大模型GeoFlow V3,给全球同行们树了一个新榜样。当其他模型还在“卷规模”的时候,GeoFlow V3选择了一条不同的路线——首次将多步推理引入蛋白质设计,让模型具备“自我评估、自主进化”的能力。
医疗机构选择AI,只看这三点。很长时间里,医疗始终被认为是新兴技术应用里最难啃的阵地。 就拿医疗数字化来说,就走得极为不容易。在当下7400亿美元的美国医疗管理支出中,IT 预算仅占630亿美元。
时隔两月,Baichuan-M2 Plus重磅出世!成为业内首个循证增强的医疗大模型,幻觉要比DeepSeek-R1低3倍,可信度比肩资深临床专家。新模型将「循证医学」理念深度融入训练和推理,通过首创「六源循证范式」,模拟人类医生思维,有效辨别不同层级医学证据、评估其可靠性,并在回答中优先引用高等级证据。
你知道“支付宝”已经杀入AI医疗赛道了吧……
近日,谷歌与耶鲁大学联合发布的大模型C2S-Scale,首次提出并验证了一项全新的「抗癌假设」。这一成果表明,大模型不仅能复现已知科学规律,还具备生成可验新科学假设的能力。