
谷歌DeepMind全新ToT基准:全面评估LLM时间推理能力
谷歌DeepMind全新ToT基准:全面评估LLM时间推理能力近日,来自谷歌DeepMind的研究人员,推出了专门用于评估大语言模型时间推理能力的基准测试——Test of Time(ToT),从两个独立的维度分别考察了LLM的时间理解和算术能力。
近日,来自谷歌DeepMind的研究人员,推出了专门用于评估大语言模型时间推理能力的基准测试——Test of Time(ToT),从两个独立的维度分别考察了LLM的时间理解和算术能力。
本文介绍了一篇语言模型对齐研究的论文,由瑞士、英国、和法国的三所大学的博士生和 Google DeepMind 以及 Google Research 的研究人员合作完成。
谷歌开源模型Gemma 2开放了! 虽然前段时间Google I/O大会上,Gemma 2开源的消息就已经被放出,但谷歌还留了个小惊喜—— 除27B模型外,还有一个更轻的9B版本。 DeepMind创始人哈萨比斯表示,27B参数规模下,Gemma 2提供了同类模型最强性能,甚至还能与其两倍大的模型竞争。
DeepMind最近发表的一篇论文提出用混合架构的方法解决Transformer模型的推理缺陷。将Transformer的NLU技能与基于GNN的神经算法推理器(NAR)的强大算法推理能力相结合,可以实现更加泛化、稳健、准确的LLM推理。
谷歌DeepMind开发的AlphaFold一夜之间颠覆了生物学,这一革命性的突破背后,有一支怎样的团队?AlphaFold的缔造者之一、DeepMind研究副总裁分享了成功的秘密——如何组建一个团队来应对这一巨大的跨学科挑战并取得胜利。
DeepMind发表了一篇名为「To Believe or Not to Believe Your LLM」的新论文,探讨了LLM的不确定性量化问题,通过「迭代提示」成功将LLM的认知不确定性和偶然不确定性解耦。研究还将新推导出的幻觉检测算法应用于Gemini,结果表明,与基线方法相比,该方法能有效检测幻觉。
不久之前,Google DeepMind 发布了 AlphaFold3,再次引发了人们对「AI + 生命科学」的讨论。
最近的一系列研究表明,纯解码器生成模型可以通过训练利用下一个 token 预测生成有用的表征,从而成功地生成多种模态(如音频、图像或状态 - 动作序列)的新序列,从文本、蛋白质、音频到图像,甚至是状态序列。
AlphaFold3的横空出世再次震撼了整个学术界,然而谷歌DeepMind的「不开源」引起学界不满,AlphaFold服务器遭到黑客攻击,开源项目也开始发力。
LLM有记忆能力吗?有,也没有。虽然ChatGPT聊天时好像可以记住你之前说的话,但实际上,模型在推理时记不住任何内容,而且它们在训练时的记忆方式也不像我们想象的那么简单。