
90分钟生成10万Token,新框架实现3倍无损加速超长文本生成,支持DeepSeek-R1和QwQ!
90分钟生成10万Token,新框架实现3倍无损加速超长文本生成,支持DeepSeek-R1和QwQ!大语言模型长序列文本生成效率新突破——生成10万Token的文本,传统自回归模型需要近5个小时,现在仅需90分钟!
大语言模型长序列文本生成效率新突破——生成10万Token的文本,传统自回归模型需要近5个小时,现在仅需90分钟!
今天凌晨,亚马逊云科技宣布在Amazon Bedrock平台上推出全托管、无服务器的DeepSeek-R1模型,是首个提供DeepSeek-R1作为全托管、正式商用模型的海外云厂商。
开源微调神器Unsloth带着黑科技又来了:短短两周后,再次优化DeepSeek-R1同款GRPO训练算法,上下文变长10倍,而显存只需原来的1/10!
近年来,大语言模型(LLM) 的快速发展正推动人工智能迈向新的高度。像 DeepSeek-R1 这样的模型因其强大的理解和生成能力,已经在 对话生成、代码编写、知识问答 等任务中展现出了卓越的表现。
DeepSeek-R1 等模型通过展示思维链(CoT)让用户一窥大模型的「思考过程」,然而,模型展示的思考过程真的代表了模型的内在推理机制吗?在医疗诊断、自动驾驶、法律判决等高风险领域,我们能否真正信任 AI 的决策?
杜克大学计算进化智能中心的最新研究给出了警示性答案。团队提出的 H-CoT(思维链劫持)的攻击方法成功突破包括 OpenAI o1/o3、DeepSeek-R1、Gemini 2.0 Flash Thinking 在内的多款高性能大型推理模型的安全防线:在涉及极端犯罪策略的虚拟教育场景测试中,模型拒绝率从初始的 98% 暴跌至 2% 以下,部分案例中甚至出现从「谨慎劝阻」到「主动献策」的立场反转。
32B小模型在超硬核「时间线索」推理谜题中,一举击败了o1、o3-mini、DeepSeek-R1,核心秘密武器便是GRPO,最关键的是训练成本暴降100倍。
随着 DeepSeek-R1 的流行与 AI4Math 研究的深入,大模型在辅助形式化证明写作方面的需求日益增长。作为数学推理最直接的应用场景,形式化推理与验证(formal reasoning and verification),也获得持续关注。
仅仅过了一天,阿里开源的新一代推理模型便能在个人设备上跑起来了!昨天深夜,阿里重磅开源了参数量 320 亿的全新推理模型 QwQ-32B,其性能足以比肩 6710 亿参数的 DeepSeek-R1 满血版。
M3 Ultra终极引擎,可跑千亿模型