
史上最快AI芯片「Sohu」,速度10倍于B200,哈佛辍学生打造
史上最快AI芯片「Sohu」,速度10倍于B200,哈佛辍学生打造生成式 AI 推理性价比是 GPU 的 140 倍。
生成式 AI 推理性价比是 GPU 的 140 倍。
近日,AI芯片初创公司Etched宣布,已筹集 1.2 亿美元,向 Nvidia 发起 AI 芯片设计挑战。
当前的多模态和多任务基础模型,如 4M 或 UnifiedIO,显示出有希望的结果。然而,它们接受不同输入和执行不同任务的开箱即用能力,受到它们接受训练的模态和任务的数量(通常很少)的限制。
纽约大学计算机科学助理教授、图灵奖得主Yann LeCun的学生Alfredo Canziani开新课了!
在GPT-4发布后14.5个月里,LLM领域似乎已经没什么进步了?近日,马库斯的一句话引发了全网论战。大模型烧钱却不赚钱,搞AI的公司表示:难办!
现有多模态大模型在对齐不同模态时面临幻觉和细粒度感知不足等问题,传统偏好学习方法依赖可能不适配的外源数据,存在成本和质量问题。Calibrated Self-Rewarding(CSR)框架通过自我增强学习,利用模型自身输出构造更可靠的偏好数据,结合视觉约束提高学习效率和准确性。
将音频、图像、视频整合进同一工作流,这个由斯坦福初创公司发布的视频工具火了! 预览版支持生成30S逼真视频,网友们直呼不输Luma。
通过高保真合成语音与真人语音无异。
在现实世界的机器学习应用中,随时间变化的分布偏移是常见的问题。这种情况被构建为时变域泛化(EDG),目标是通过学习跨领域的潜在演变模式,并利用这些模式,使模型能够在时间变化系统中对未见目标域进行良好的泛化。然而,由于 EDG 数据集中时间戳的数量有限,现有方法在捕获演变动态和避免对稀疏时间戳的过拟合方面遇到了挑战,这限制了它们对新任务的泛化和适应性。
最近两天,一篇入选 ACL 2024 的论文《Can Language Models Serve as Text-Based World Simulators?》在社交媒体 X 上引发了热议,就连图灵奖得主 Yann LeCun 也参与了进来。