MetaGPT开源自动生成智能体工作流,4.55%成本超GPT-4o
MetaGPT开源自动生成智能体工作流,4.55%成本超GPT-4o对于 LLM 从业者来说,让 LLM 落地应用并发挥作用需要手动构建并反复调试 Agentic Workflow,这无疑是个繁琐过程,一遍遍修改相似的代码,调试 prompt,手动执行测试并观察效果,并且换个 LLM 可能就会失效,有高昂的人力成本。许多公司甚至专职招聘 Prompt Engineer 来完成这一工作。
对于 LLM 从业者来说,让 LLM 落地应用并发挥作用需要手动构建并反复调试 Agentic Workflow,这无疑是个繁琐过程,一遍遍修改相似的代码,调试 prompt,手动执行测试并观察效果,并且换个 LLM 可能就会失效,有高昂的人力成本。许多公司甚至专职招聘 Prompt Engineer 来完成这一工作。
近期,智驾行业出现了一个融合了视觉、语言和动作的多模态大模型范式——VLA(Vision-Language-Action Model,即视觉-语言-动作模型),拥有更高的场景推理能力与泛化能力。不少智驾人士都将VLA视为当下“端到端”方案的2.0版本。
纳尼?AI Agent容易受到弹幕影响! 甚至比人类更容易。
清华大学NLP实验室联合北京师范大学、中国科学院大学、东北大学等机构的研究人员推出了全新的评测方法 RAGEval,通过快速构建场景化评估数据实现对检索增强生成(RAG)系统的“精准诊断”。
中国人民大学高瓴人工智能学院 GeWu 实验室、朝闻道机器人和 TeleAI 最近的合作研究揭示并指出了 “模态时变性”(Modality Temporality)现象,通过捕捉并刻画各个模态质量随物体操纵过程的变化,提升不同信息在具身多模态交互的感知质量,可显著改善精细物体操纵的表现。论文已被 CoRL2024 接收并选为 Oral Presentation。
近日,谷歌DeepMind发表的一项研究登上了Nature期刊的封面,研究人员开发了一种名为SynthID-Text的水印方案,已经在自家的Gemini上投入使用,跟踪AI生成的文本内容,使其无所遁形。
AI智能体能像有机生命一样自适应演化吗?最近清华大学团队提出了AgentSquare模块化智能体设计框架,通过标准化的模块接口抽象,让AI智能体可以通过模块演化和重组高速进化,实现针对不同任务场景的自适应演进,赋能超越人类设计的智能体系统在多种评测数据集上广泛自我涌现。
近日,关于 Open AI 被投企业 Physical Intelligence (PI) 的一系列报道,让人们关注到具身智能大模型引发的机器人时代变革。
Lodge++ 是一个创新的舞蹈编排框架,旨在根据给定的音乐和期望的舞蹈风格生成高质量、超长且生动的舞蹈序列。
在金融市场中,动态知识图谱(Dynamic Knowledge Graphs,DKGs)是一种表达对象之间随时间变化的多种关系的流行结构。它们可以有效地表示从复杂的非结构化数据源(如文本或图像)中提取的信息。在金融应用中,基于从金融新闻文章中获取的信息,DKGs 可用于检测战略性主题投资的趋势。