
如何高效桥接视觉和语言,字节&中大提出全新多模态大模型连接器ParGo
如何高效桥接视觉和语言,字节&中大提出全新多模态大模型连接器ParGo在多模态大语言模型(MLLMs)的发展中,视觉 - 语言连接器作为将视觉特征映射到 LLM 语言空间的关键组件,起到了桥梁作用。
在多模态大语言模型(MLLMs)的发展中,视觉 - 语言连接器作为将视觉特征映射到 LLM 语言空间的关键组件,起到了桥梁作用。
我们生活在一个感官丰富的 3D 世界中,视觉信号围绕着我们,让我们能够感知、理解和与之互动。
如今,多模态大模型(MLLM)已经在视觉理解领域取得了长足进步,其中视觉指令调整方法已被广泛应用。该方法是具有数据和计算效率方面的优势,其有效性表明大语言模型(LLM)拥有了大量固有的视觉知识,使得它们能够在指令调整过程中有效地学习和发展视觉理解。
本文介绍了首个多模态大模型(MLLM)可解释性综述
该项目由忆生科技联合香港大学、上海科技大学共同完成,是全球首个同时支持文本描述、图像、点云等多模态输入的计算机辅助设计(CAD)生成大模型。
在多模态AI领域,基于预训练视觉编码器与MLLM的方法(如LLaVA系列)在视觉理解任务上展现出卓越性能。
MME-Finance 是一个专为金融领域设计的多模态基准测试,由同花顺财经旗下的 HiThink 研究团队联合多家高校共同开发,旨在评估和提升多模态大型语言模型(MLLMs)在金融领域的专业理解和推理能力。
Ferret-UI 2 是苹果研究团队最新发表的一款先进的多模态大型语言模型(MLLM),旨在实现跨多个平台的通用用户界面(UI)理解。
PUMA(emPowering Unified MLLM with Multi-grAnular visual generation)是一项创新的多模态大型语言模型(MLLM),由商汤科技联合来自香港中文大学、港大和清华大学的研究人员共同开发。它通过统一的框架处理和生成多粒度的视觉表示,巧妙地平衡了视觉生成任务中的多样性与可控性。
多模态大语言模型(MLLM)如今已是大势所趋。 过去的一年中,闭源阵营的GPT-4o、GPT-4V、Gemini-1.5和Claude-3.5等模型引领了时代。