
同时优化几种语气的prompt怎么办?MOPO:实现多领域情感文本生成的提示优化(附提示词)
同时优化几种语气的prompt怎么办?MOPO:实现多领域情感文本生成的提示优化(附提示词)在人工智能快速发展的今天,提示工程(Prompt Engineering)已经成为AI应用开发中不可或缺的环节。然而,当我们需要生成适应不同场景的情感文本时,传统的单一目标提示优化方法往往显得力不从心。
在人工智能快速发展的今天,提示工程(Prompt Engineering)已经成为AI应用开发中不可或缺的环节。然而,当我们需要生成适应不同场景的情感文本时,传统的单一目标提示优化方法往往显得力不从心。
在软件开发过程中,测试用例的生成一直是一个既重要又耗时的环节。近年来,大型语言模型(LLM)在这一领域展现出了巨大的潜力。然而,实践表明,即使是同一个提示词(Prompt),在不同的LLM上也会产生截然不同的效果。
就在刚刚,OpenAI在智能体上落后竞争对手的原因曝光了!
当我们与AI对话,说出的每一句话都是一个prompt。无论是让AI生成一幅画作,写一段代码,还是完成一篇文章,都需要通过prompt来表达我们的想法。这种人类与AI的对话方式,正在悄然改变我们的工作与生活。
人工智能正以前所未有的速度改变着我们的世界。在这场技术革命中,Anthropic等领先企业描绘了一幅令人振奋的未来图景:智能代理系统将在各行各业发挥重要作用,从客户服务到软件开发,AI都将成为不可或缺的助手。然而,在这片繁荣景象的背后,一个潜在的危机正在悄然滋长。
我们实测16个Prompt:生成速度比Sora还快,动漫效果行业SOTA。
在人工智能领域,大语言模型(LLM)的应用已经渗透到创意写作的方方面面。
在大语言模型(LLM)蓬勃发展的今天,提示词工程(Prompt Engineering)已经成为AI应用开发中不可或缺的关键环节。
PromptWizard (PW) 旨在自动化和简化提示优化。它将 LLM 的迭代反馈与高效的探索和改进技术相结合,在几分钟内创建高效的prompts。
上周发出《AI时代写Prompt应该用APPL:为Prompt工程打造的编程语言,来自清华姚班的博士》之后,文章中实现了一个Google DeepMind的OPRO简单版本的优化方法,这让很多读者非常着迷。