
NeurIPS Spotlight|从分类到生成:无训练的可控扩散生成
NeurIPS Spotlight|从分类到生成:无训练的可控扩散生成近年来,扩散模型(Diffusion Models)已成为生成模型领域的研究前沿,它们在图像生成、视频生成、分子设计、音频生成等众多领域展现出强大的能力。
近年来,扩散模型(Diffusion Models)已成为生成模型领域的研究前沿,它们在图像生成、视频生成、分子设计、音频生成等众多领域展现出强大的能力。
2023 年,阿里妈妈首次提出了 AIGB(AI-Generated Bidding)Bidding 模型训练新范式(参阅:阿里妈妈生成式出价模型(AIGB)详解)。
刚刚,人工智能顶会 NeurIPS 公布了今年的最佳论文(包括 Best Paper 和 Best Paper Runner-up,大会注册者可以看到)。
太戏剧了!攻击字节训练集群的实习生,居然刚刚获得了NeurIPS 2024最佳论文奖?虽然看起来像爽文剧情,但这位高材生接下来的路,应该是难走了。
研究人员提出了一种方法,能够在领域数据分布持续变化的动态环境中,基于随机时刻观测的数据分布,在任意时刻生成适用的神经网络,实现前所未有的泛化能力。
大语言模型(LLM)在各种任务上展示了卓越的性能。然而,受到幻觉(hallucination)的影响,LLM 生成的内容有时会出现错误或与事实不符,这限制了其在实际应用中的可靠性。
本文将介绍数学推理场景下的首个分布外检测研究成果。
无需Transformer,简单滤波器即可提高时间序列预测精度。 由国家信息中心、牛津大学、北京理工大学、同济大学、中国科学技术大学等机构的团队提出了一个FilterNet。 目前已被NeurlPS 2024接收。
计算、存储消耗高,机器人使用多模态模型的障碍被解决了! 来自清华大学的研究者们设计了DeeR-VLA框架,一种适用于VLA的“动态推理”框架,能将LLM部分的相关计算、内存开销平均降低4-6倍。
只需一次人类示范,就能让智能体适应新环境?